GAN


2024-01-12 更新

EFHQ: Multi-purpose ExtremePose-Face-HQ dataset

Authors:Trung Tuan Dao, Duc Hong Vu, Cuong Pham, Anh Tran

The existing facial datasets, while having plentiful images at near frontal views, lack images with extreme head poses, leading to the downgraded performance of deep learning models when dealing with profile or pitched faces. This work aims to address this gap by introducing a novel dataset named Extreme Pose Face High-Quality Dataset (EFHQ), which includes a maximum of 450k high-quality images of faces at extreme poses. To produce such a massive dataset, we utilize a novel and meticulous dataset processing pipeline to curate two publicly available datasets, VFHQ and CelebV-HQ, which contain many high-resolution face videos captured in various settings. Our dataset can complement existing datasets on various facial-related tasks, such as facial synthesis with 2D/3D-aware GAN, diffusion-based text-to-image face generation, and face reenactment. Specifically, training with EFHQ helps models generalize well across diverse poses, significantly improving performance in scenarios involving extreme views, confirmed by extensive experiments. Additionally, we utilize EFHQ to define a challenging cross-view face verification benchmark, in which the performance of SOTA face recognition models drops 5-37% compared to frontal-to-frontal scenarios, aiming to stimulate studies on face recognition under severe pose conditions in the wild.
PDF Project Page: https://bomcon123456.github.io/efhq/

点此查看论文截图

FED-NeRF: Achieve High 3D Consistency and Temporal Coherence for Face Video Editing on Dynamic NeRF

Authors:Hao Zhang, Yu-Wing Tai, Chi-Keung Tang

The success of the GAN-NeRF structure has enabled face editing on NeRF to maintain 3D view consistency. However, achieving simultaneously multi-view consistency and temporal coherence while editing video sequences remains a formidable challenge. This paper proposes a novel face video editing architecture built upon the dynamic face GAN-NeRF structure, which effectively utilizes video sequences to restore the latent code and 3D face geometry. By editing the latent code, multi-view consistent editing on the face can be ensured, as validated by multiview stereo reconstruction on the resulting edited images in our dynamic NeRF. As the estimation of face geometries occurs on a frame-by-frame basis, this may introduce a jittering issue. We propose a stabilizer that maintains temporal coherence by preserving smooth changes of face expressions in consecutive frames. Quantitative and qualitative analyses reveal that our method, as the pioneering 4D face video editor, achieves state-of-the-art performance in comparison to existing 2D or 3D-based approaches independently addressing identity and motion. Codes will be released.
PDF Our code will be available at: https://github.com/ZHANG1023/FED-NeRF

点此查看论文截图

3D-SSGAN: Lifting 2D Semantics for 3D-Aware Compositional Portrait Synthesis

Authors:Ruiqi Liu, Peng Zheng, Ye Wang, Rui Ma

Existing 3D-aware portrait synthesis methods can generate impressive high-quality images while preserving strong 3D consistency. However, most of them cannot support the fine-grained part-level control over synthesized images. Conversely, some GAN-based 2D portrait synthesis methods can achieve clear disentanglement of facial regions, but they cannot preserve view consistency due to a lack of 3D modeling abilities. To address these issues, we propose 3D-SSGAN, a novel framework for 3D-aware compositional portrait image synthesis. First, a simple yet effective depth-guided 2D-to-3D lifting module maps the generated 2D part features and semantics to 3D. Then, a volume renderer with a novel 3D-aware semantic mask renderer is utilized to produce the composed face features and corresponding masks. The whole framework is trained end-to-end by discriminating between real and synthesized 2D images and their semantic masks. Quantitative and qualitative evaluations demonstrate the superiority of 3D-SSGAN in controllable part-level synthesis while preserving 3D view consistency.
PDF

点此查看论文截图

GE-AdvGAN: Improving the transferability of adversarial samples by gradient editing-based adversarial generative model

Authors:Zhiyu Zhu, Huaming Chen, Xinyi Wang, Jiayu Zhang, Zhibo Jin, Kim-Kwang Raymond Choo

Adversarial generative models, such as Generative Adversarial Networks (GANs), are widely applied for generating various types of data, i.e., images, text, and audio. Accordingly, its promising performance has led to the GAN-based adversarial attack methods in the white-box and black-box attack scenarios. The importance of transferable black-box attacks lies in their ability to be effective across different models and settings, more closely aligning with real-world applications. However, it remains challenging to retain the performance in terms of transferable adversarial examples for such methods. Meanwhile, we observe that some enhanced gradient-based transferable adversarial attack algorithms require prolonged time for adversarial sample generation. Thus, in this work, we propose a novel algorithm named GE-AdvGAN to enhance the transferability of adversarial samples whilst improving the algorithm’s efficiency. The main approach is via optimising the training process of the generator parameters. With the functional and characteristic similarity analysis, we introduce a novel gradient editing (GE) mechanism and verify its feasibility in generating transferable samples on various models. Moreover, by exploring the frequency domain information to determine the gradient editing direction, GE-AdvGAN can generate highly transferable adversarial samples while minimizing the execution time in comparison to the state-of-the-art transferable adversarial attack algorithms. The performance of GE-AdvGAN is comprehensively evaluated by large-scale experiments on different datasets, which results demonstrate the superiority of our algorithm. The code for our algorithm is available at: https://github.com/LMBTough/GE-advGAN
PDF Accepted by SIAM International Conference on Data Mining (SDM24)

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录