LLM


2023-11-25 更新

Automatic Instruction Optimization for Open-source LLM Instruction Tuning

Authors:Yilun Liu, Shimin Tao, Xiaofeng Zhao, Ming Zhu, Wenbing Ma, Junhao Zhu, Chang Su, Yutai Hou, Miao Zhang, Min Zhang, Hongxia Ma, Li Zhang, Hao Yang, Yanfei Jiang

Instruction tuning is crucial for enabling Language Learning Models (LLMs) in responding to human instructions. The quality of instruction pairs used for tuning greatly affects the performance of LLMs. However, the manual creation of high-quality instruction datasets is costly, leading to the adoption of automatic generation of instruction pairs by LLMs as a popular alternative in the training of open-source LLMs. To ensure the high quality of LLM-generated instruction datasets, several approaches have been proposed. Nevertheless, existing methods either compromise dataset integrity by filtering a large proportion of samples, or are unsuitable for industrial applications. In this paper, instead of discarding low-quality samples, we propose CoachLM, a novel approach to enhance the quality of instruction datasets through automatic revisions on samples in the dataset. CoachLM is trained from the samples revised by human experts and significantly increases the proportion of high-quality samples in the dataset from 17.7% to 78.9%. The effectiveness of CoachLM is further assessed on various real-world instruction test sets. The results show that CoachLM improves the instruction-following capabilities of the instruction-tuned LLM by an average of 29.9%, which even surpasses larger LLMs with nearly twice the number of parameters. Furthermore, CoachLM is successfully deployed in a data management system for LLMs at Huawei, resulting in an efficiency improvement of up to 20% in the cleaning of 40k real-world instruction pairs. We release the training data and code of CoachLM (https://github.com/lunyiliu/CoachLM).
PDF

点此查看论文截图

Enhancing Summarization Performance through Transformer-Based Prompt Engineering in Automated Medical Reporting

Authors:Daphne van Zandvoort, Laura Wiersema, Tom Huibers, Sandra van Dulmen, Sjaak Brinkkemper

Customized medical prompts enable Large Language Models (LLM) to effectively address medical dialogue summarization. The process of medical reporting is often time-consuming for healthcare professionals. Implementing medical dialogue summarization techniques presents a viable solution to alleviate this time constraint by generating automated medical reports. The effectiveness of LLMs in this process is significantly influenced by the formulation of the prompt, which plays a crucial role in determining the quality and relevance of the generated reports. In this research, we used a combination of two distinct prompting strategies, known as shot prompting and pattern prompting to enhance the performance of automated medical reporting. The evaluation of the automated medical reports is carried out using the ROUGE score and a human evaluation with the help of an expert panel. The two-shot prompting approach in combination with scope and domain context outperforms other methods and achieves the highest score when compared to the human reference set by a general practitioner. However, the automated reports are approximately twice as long as the human references, due to the addition of both redundant and relevant statements that are added to the report.
PDF 12 pages, 4 figures, submitted to Healthinf 2024, author roles: research conducted and written by Daphne van Zandvoort and Laura Wiersema, research suggested and used software created by Tom Huibers, data provided and feedback provided by Sandra van Dulmen, supervision and feedback provided by Sjaak Brinkkemper

点此查看论文截图

Confidant: Customizing Transformer-based LLMs via Collaborative Edge Training

Authors:Yuhao Chen, Yuxuan Yan, Qianqian Yang, Yuanchao Shu, Shibo He, Jiming Chen

Transformer-based large language models (LLMs) have demonstrated impressive capabilities in a variety of natural language processing (NLP) tasks. Nonetheless, it is challenging to deploy and fine-tune LLMs on mobile edge devices with limited computing, memory, and energy budgets. In this paper, we propose Confidant, a multi-backend collaborative training framework for customizing state-of-the-art LLMs on commodity mobile devices like smartphones. Confidant partitions an LLM into several sub-models so that each fits into a mobile device’s memory. A pipeline parallel training mechanism is further developed to ensure fast and efficient distributed training. In addition, we propose a novel backend scheduler to allocate different attention heads to heterogeneous compute hardware, including mobile CPU and GPUs, to maximize the compute resource utilization on each edge device. Our preliminary experimental results show that Confidant achieves at most 45.3% memory reduction and 8.03x inference speedup in practical settings.
PDF 6 pages, 7 figures; Submitted to HotMobile 2024

点此查看论文截图

PG-Video-LLaVA: Pixel Grounding Large Video-Language Models

Authors:Shehan Munasinghe, Rusiru Thushara, Muhammad Maaz, Hanoona Abdul Rasheed, Salman Khan, Mubarak Shah, Fahad Khan

Extending image-based Large Multimodal Models (LMM) to videos is challenging due to the inherent complexity of video data. The recent approaches extending image-based LMM to videos either lack the grounding capabilities (e.g., VideoChat, Video-ChatGPT, Video-LLaMA) or do not utilize the audio-signals for better video understanding (e.g., Video-ChatGPT). Addressing these gaps, we propose Video-LLaVA, the first LMM with pixel-level grounding capability, integrating audio cues by transcribing them into text to enrich video-context understanding. Our framework uses an off-the-shelf tracker and a novel grounding module, enabling it to spatially and temporally localize objects in videos following user instructions. We evaluate Video-LLaVA using video-based generative and question-answering benchmarks and introduce new benchmarks specifically designed to measure prompt-based object grounding performance in videos. Further, we propose the use of Vicuna over GPT-3.5, as utilized in Video-ChatGPT, for video-based conversation benchmarking, ensuring reproducibility of results which is a concern with the proprietary nature of GPT-3.5. Our framework builds on SoTA image-based LLaVA model and extends its advantages to the video domain, delivering promising gains on video-based conversation and grounding tasks. Project Page: https://github.com/mbzuai-oryx/Video-LLaVA
PDF Technical Report

点此查看论文截图

Speak Like a Native: Prompting Large Language Models in a Native Style

Authors:Zhicheng Yang, Yiwei Wang, Yinya Huang, Jing Xiong, Xiaodan Liang, Jing Tang

Existing work has found that the prompt engineering heavily influences the performance of large language models (LLMs). Chain-of-thought (CoT), as a popular prompt engineering technique, prompted LLMs using in-context examples with reasoning steps. In current studies, the few-shot examples of CoT are generally handcrafted by humans. However, how the text style of in-context examples influence the outputs of LLMs still remains under-explored. This paper presents a novel and effective approach, named \textbf{AlignCoT}, to improve the reasoning capability of LLMs by aligning the in-context examples with the native style of LLMs. ``Native’’ refers to the inherent characteristic style of LLMs which can be probed by original zero-shot scenarios. AlignCoT is orthogonal to other prompt engineering methods, making it easy to combine with state-of-the-art techniques to further improve the LLMs’ performance. We conduct extensive and comprehensive experiments on several benchmarks. The empirical results demonstrate that our AlignCoTsignificantly improves performance over the carefully handcrafted in-context examples. For instance, with GPT-3.5-turbo, we observed a +2.5\% improvement on GSM8K. Furthermore, our AlignCoT consistently improve the performance when combined with other state-of-the-art prompt engineering methods. The source code and dataset will be available at \href{https://github.com/yangzhch6/AlignCoT}{https://github.com/yangzhch6/AlignCoT}.
PDF 8 pages, 3 figures

点此查看论文截图

Soulstyler: Using Large Language Model to Guide Image Style Transfer for Target Object

Authors:Junhao Chen, Peng Rong, Jingbo Sun, Chao Li, Xiang Li, Hongwu Lv

Image style transfer occupies an important place in both computer graphics and computer vision. However, most current methods require reference to stylized images and cannot individually stylize specific objects. To overcome this limitation, we propose the “Soulstyler” framework, which allows users to guide the stylization of specific objects in an image through simple textual descriptions. We introduce a large language model to parse the text and identify stylization goals and specific styles. Combined with a CLIP-based semantic visual embedding encoder, the model understands and matches text and image content. We also introduce a novel localized text-image block matching loss that ensures that style transfer is performed only on specified target objects, while non-target regions remain in their original style. Experimental results demonstrate that our model is able to accurately perform style transfer on target objects according to textual descriptions without affecting the style of background regions. Our code will be available at https://github.com/yisuanwang/Soulstyler.
PDF 5 pages,3 figures,ICASSP2024

点此查看论文截图

Drilling Down into the Discourse Structure with LLMs for Long Document Question Answering

Authors:Inderjeet Nair, Shwetha Somasundaram, Apoorv Saxena, Koustava Goswami

We address the task of evidence retrieval for long document question answering, which involves locating relevant paragraphs within a document to answer a question. We aim to assess the applicability of large language models (LLMs) in the task of zero-shot long document evidence retrieval, owing to their unprecedented performance across various NLP tasks. However, currently the LLMs can consume limited context lengths as input, thus providing document chunks as inputs might overlook the global context while missing out on capturing the inter-segment dependencies. Moreover, directly feeding the large input sets can incur significant computational costs, particularly when processing the entire document (and potentially incurring monetary expenses with enterprise APIs like OpenAI’s GPT variants). To address these challenges, we propose a suite of techniques that exploit the discourse structure commonly found in documents. By utilizing this structure, we create a condensed representation of the document, enabling a more comprehensive understanding and analysis of relationships between different parts. We retain $99.6\%$ of the best zero-shot approach’s performance, while processing only $26\%$ of the total tokens used by the best approach in the information seeking evidence retrieval setup. We also show how our approach can be combined with \textit{self-ask} reasoning agent to achieve best zero-shot performance in complex multi-hop question answering, just $\approx 4\%$ short of zero-shot performance using gold evidence.
PDF Accepted to the Findings of EMNLP 2023

点此查看论文截图

Physical Reasoning and Object Planning for Household Embodied Agents

Authors:Ayush Agrawal, Raghav Prabhakar, Anirudh Goyal, Dianbo Liu

In this study, we explore the sophisticated domain of task planning for robust household embodied agents, with a particular emphasis on the intricate task of selecting substitute objects. We introduce the CommonSense Object Affordance Task (COAT), a novel framework designed to analyze reasoning capabilities in commonsense scenarios. This approach is centered on understanding how these agents can effectively identify and utilize alternative objects when executing household tasks, thereby offering insights into the complexities of practical decision-making in real-world environments.Drawing inspiration from human decision-making, we explore how large language models tackle this challenge through three meticulously crafted commonsense question-and-answer datasets, featuring refined rules and human annotations. Our evaluation of state-of-the-art language models on these datasets sheds light on three pivotal considerations: 1) aligning an object’s inherent utility with the task at hand, 2) navigating contextual dependencies (societal norms, safety, appropriateness, and efficiency), and 3) accounting for the current physical state of the object. To maintain accessibility, we introduce five abstract variables reflecting an object’s physical condition, modulated by human insights to simulate diverse household scenarios. Our contributions include insightful Object-Utility mappings addressing the first consideration and two extensive QA datasets (15k and 130k questions) probing the intricacies of contextual dependencies and object states. The datasets, along with our findings, are accessible at: \url{https://github.com/com-phy-affordance/COAT}. This research not only advances our understanding of physical commonsense reasoning in language models but also paves the way for future improvements in household agent intelligence.
PDF Total: 32 pages ( 16 pages main content, 11 Figures)

点此查看论文截图

Visual In-Context Prompting

Authors:Feng Li, Qing Jiang, Hao Zhang, Tianhe Ren, Shilong Liu, Xueyan Zou, Huaizhe Xu, Hongyang Li, Chunyuan Li, Jianwei Yang, Lei Zhang, Jianfeng Gao

In-context prompting in large language models (LLMs) has become a prevalent approach to improve zero-shot capabilities, but this idea is less explored in the vision domain. Existing visual prompting methods focus on referring segmentation to segment the most relevant object, falling short of addressing many generic vision tasks like open-set segmentation and detection. In this paper, we introduce a universal visual in-context prompting framework for both tasks. In particular, we build on top of an encoder-decoder architecture, and develop a versatile prompt encoder to support a variety of prompts like strokes, boxes, and points. We further enhance it to take an arbitrary number of reference image segments as the context. Our extensive explorations show that the proposed visual in-context prompting elicits extraordinary referring and generic segmentation capabilities to refer and detect, yielding competitive performance to close-set in-domain datasets and showing promising results on many open-set segmentation datasets. By joint training on COCO and SA-1B, our model achieves $57.7$ PQ on COCO and $23.2$ PQ on ADE20K. Code will be available at https://github.com/UX-Decoder/DINOv.
PDF technical report

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录