Domain Adaptation


2023-11-25 更新

SEA++: Multi-Graph-based High-Order Sensor Alignment for Multivariate Time-Series Unsupervised Domain Adaptation

Authors:Yucheng Wang, Yuecong Xu, Jianfei Yang, Min Wu, Xiaoli Li, Lihua Xie, Zhenghua Chen

Unsupervised Domain Adaptation (UDA) methods have been successful in reducing label dependency by minimizing the domain discrepancy between a labeled source domain and an unlabeled target domain. However, these methods face challenges when dealing with Multivariate Time-Series (MTS) data. MTS data typically consist of multiple sensors, each with its own unique distribution. This characteristic makes it hard to adapt existing UDA methods, which mainly focus on aligning global features while overlooking the distribution discrepancies at the sensor level, to reduce domain discrepancies for MTS data. To address this issue, a practical domain adaptation scenario is formulated as Multivariate Time-Series Unsupervised Domain Adaptation (MTS-UDA). In this paper, we propose SEnsor Alignment (SEA) for MTS-UDA, aiming to reduce domain discrepancy at both the local and global sensor levels. At the local sensor level, we design endo-feature alignment, which aligns sensor features and their correlations across domains. To reduce domain discrepancy at the global sensor level, we design exo-feature alignment that enforces restrictions on global sensor features. We further extend SEA to SEA++ by enhancing the endo-feature alignment. Particularly, we incorporate multi-graph-based high-order alignment for both sensor features and their correlations. Extensive empirical results have demonstrated the state-of-the-art performance of our SEA and SEA++ on public MTS datasets for MTS-UDA.
PDF

点此查看论文截图

Adapt in Contexts: Retrieval-Augmented Domain Adaptation via In-Context Learning

Authors:Quanyu Long, Wenya Wang, Sinno Jialin Pan

Large language models (LLMs) have showcased their capability with few-shot inference known as in-context learning. However, in-domain demonstrations are not always readily available in real scenarios, leading to cross-domain in-context learning. Besides, LLMs are still facing challenges in long-tail knowledge in unseen and unfamiliar domains. The above limitations demonstrate the necessity of Unsupervised Domain Adaptation (UDA). In this paper, we study the UDA problem under an in-context learning setting to adapt language models from the source domain to the target domain without any target labels. The core idea is to retrieve a subset of cross-domain elements that are the most similar to the query, and elicit language model to adapt in an in-context manner by learning both target domain distribution and the discriminative task signal simultaneously with the augmented cross-domain in-context examples. We devise different prompting and training strategies, accounting for different LM architectures to learn the target distribution via language modeling. With extensive experiments on Sentiment Analysis (SA) and Named Entity Recognition (NER) tasks, we thoroughly study the effectiveness of ICL for domain transfer and demonstrate significant improvements over baseline models.
PDF EMNLP 2023

点此查看论文截图

Generalization of Fitness Exercise Recognition from Doppler Measurements by Domain-adaption and Few-Shot Learning

Authors:Biying Fu, Naser Damer, Florian Kirchbuchner, Arjan Kuijper

In previous works, a mobile application was developed using an unmodified commercial off-the-shelf smartphone to recognize whole-body exercises. The working principle was based on the ultrasound Doppler sensing with the device built-in hardware. Applying such a lab-environment trained model on realistic application variations causes a significant drop in performance, and thus decimate its applicability. The reason of the reduced performance can be manifold. It could be induced by the user, environment, and device variations in realistic scenarios. Such scenarios are often more complex and diverse, which can be challenging to anticipate in the initial training data. To study and overcome this issue, this paper presents a database with controlled and uncontrolled subsets of fitness exercises. We propose two concepts to utilize small adaption data to successfully improve model generalization in an uncontrolled environment, increasing the recognition accuracy by two to six folds compared to the baseline for different users.
PDF accepted at International Conference on Pattern Recognition (ICPR) workshop 2021

点此查看论文截图

Efficient Domain Adaptation via Generative Prior for 3D Infant Pose Estimation

Authors:Zhuoran Zhou, Zhongyu Jiang, Wenhao Chai, Cheng-Yen Yang, Lei Li, Jenq-Neng Hwang

Although 3D human pose estimation has gained impressive development in recent years, only a few works focus on infants, that have different bone lengths and also have limited data. Directly applying adult pose estimation models typically achieves low performance in the infant domain and suffers from out-of-distribution issues. Moreover, the limitation of infant pose data collection also heavily constrains the efficiency of learning-based models to lift 2D poses to 3D. To deal with the issues of small datasets, domain adaptation and data augmentation are commonly used techniques. Following this paradigm, we take advantage of an optimization-based method that utilizes generative priors to predict 3D infant keypoints from 2D keypoints without the need of large training data. We further apply a guided diffusion model to domain adapt 3D adult pose to infant pose to supplement small datasets. Besides, we also prove that our method, ZeDO-i, could attain efficient domain adaptation, even if only a small number of data is given. Quantitatively, we claim that our model attains state-of-the-art MPJPE performance of 43.6 mm on the SyRIP dataset and 21.2 mm on the MINI-RGBD dataset.
PDF WACVW 2024

点此查看论文截图

Learning Site-specific Styles for Multi-institutional Unsupervised Cross-modality Domain Adaptation

Authors:Han Liu, Yubo Fan, Zhoubing Xu, Benoit M. Dawant, Ipek Oguz

Unsupervised cross-modality domain adaptation is a challenging task in medical image analysis, and it becomes more challenging when source and target domain data are collected from multiple institutions. In this paper, we present our solution to tackle the multi-institutional unsupervised domain adaptation for the crossMoDA 2023 challenge. First, we perform unpaired image translation to translate the source domain images to the target domain, where we design a dynamic network to generate synthetic target domain images with controllable, site-specific styles. Afterwards, we train a segmentation model using the synthetic images and further reduce the domain gap by self-training. Our solution achieved the 1st place during both the validation and testing phases of the challenge. The code repository is publicly available at https://github.com/MedICL-VU/crossmoda2023.
PDF crossMoDA 2023 challenge 1st place solution

点此查看论文截图

GLAD: Global-Local View Alignment and Background Debiasing for Unsupervised Video Domain Adaptation with Large Domain Gap

Authors:Hyogun Lee, Kyungho Bae, Seong Jong Ha, Yumin Ko, Gyeong-Moon Park, Jinwoo Choi

In this work, we tackle the challenging problem of unsupervised video domain adaptation (UVDA) for action recognition. We specifically focus on scenarios with a substantial domain gap, in contrast to existing works primarily deal with small domain gaps between labeled source domains and unlabeled target domains. To establish a more realistic setting, we introduce a novel UVDA scenario, denoted as Kinetics->BABEL, with a more considerable domain gap in terms of both temporal dynamics and background shifts. To tackle the temporal shift, i.e., action duration difference between the source and target domains, we propose a global-local view alignment approach. To mitigate the background shift, we propose to learn temporal order sensitive representations by temporal order learning and background invariant representations by background augmentation. We empirically validate that the proposed method shows significant improvement over the existing methods on the Kinetics->BABEL dataset with a large domain gap. The code is available at https://github.com/KHUVLL/GLAD.
PDF This is an accepted WACV 2024 paper. Our code is available at https://github.com/KHUVLL/GLAD

点此查看论文截图

Speaker-Adapted End-to-End Visual Speech Recognition for Continuous Spanish

Authors:David Gimeno-Gómez, Carlos-D. Martínez-Hinarejos

Different studies have shown the importance of visual cues throughout the speech perception process. In fact, the development of audiovisual approaches has led to advances in the field of speech technologies. However, although noticeable results have recently been achieved, visual speech recognition remains an open research problem. It is a task in which, by dispensing with the auditory sense, challenges such as visual ambiguities and the complexity of modeling silence must be faced. Nonetheless, some of these challenges can be alleviated when the problem is approached from a speaker-dependent perspective. Thus, this paper studies, using the Spanish LIP-RTVE database, how the estimation of specialized end-to-end systems for a specific person could affect the quality of speech recognition. First, different adaptation strategies based on the fine-tuning technique were proposed. Then, a pre-trained CTC/Attention architecture was used as a baseline throughout our experiments. Our findings showed that a two-step fine-tuning process, where the VSR system is first adapted to the task domain, provided significant improvements when the speaker adaptation was addressed. Furthermore, results comparable to the current state of the art were reached even when only a limited amount of data was available.
PDF Accepted in Proceedings of IberSpeech 2022 ( https://www.isca-speech.org/archive/iberspeech_2022/gimenogomez22_iberspeech.html )

点此查看论文截图

Revisiting the Domain Shift and Sample Uncertainty in Multi-source Active Domain Transfer

Authors:Wenqiao Zhang, Zheqi Lv, Hao Zhou, Jia-Wei Liu, Juncheng Li, Mengze Li, Siliang Tang, Yueting Zhuang

Active Domain Adaptation (ADA) aims to maximally boost model adaptation in a new target domain by actively selecting a limited number of target data to annotate.This setting neglects the more practical scenario where training data are collected from multiple sources. This motivates us to target a new and challenging setting of knowledge transfer that extends ADA from a single source domain to multiple source domains, termed Multi-source Active Domain Adaptation (MADA). Not surprisingly, we find that most traditional ADA methods cannot work directly in such a setting, mainly due to the excessive domain gap introduced by all the source domains and thus their uncertainty-aware sample selection can easily become miscalibrated under the multi-domain shifts. Considering this, we propose a Dynamic integrated uncertainty valuation framework(Detective) that comprehensively consider the domain shift between multi-source domains and target domain to detect the informative target samples. Specifically, the leverages a dynamic Domain Adaptation(DA) model that learns how to adapt the model’s parameters to fit the union of multi-source domains. This enables an approximate single-source domain modeling by the dynamic model. We then comprehensively measure both domain uncertainty and predictive uncertainty in the target domain to detect informative target samples using evidential deep learning, thereby mitigating uncertainty miscalibration. Furthermore, we introduce a contextual diversity-aware calculator to enhance the diversity of the selected samples. Experiments demonstrate that our solution outperforms existing methods by a considerable margin on three domain adaptation benchmarks.
PDF arXiv admin note: text overlap with arXiv:2302.13824 by other authors

点此查看论文截图

Multi-modal In-Context Learning Makes an Ego-evolving Scene Text Recognizer

Authors:Zhen Zhao, Can Huang, Binghong Wu, Chunhui Lin, Hao Liu, Zhizhong Zhang, Xin Tan, Jingqun Tang, Yuan Xie

Scene text recognition (STR) in the wild frequently encounters challenges when coping with domain variations, font diversity, shape deformations, etc. A straightforward solution is performing model fine-tuning tailored to a specific scenario, but it is computationally intensive and requires multiple model copies for various scenarios. Recent studies indicate that large language models (LLMs) can learn from a few demonstration examples in a training-free manner, termed “In-Context Learning” (ICL). Nevertheless, applying LLMs as a text recognizer is unacceptably resource-consuming. Moreover, our pilot experiments on LLMs show that ICL fails in STR, mainly attributed to the insufficient incorporation of contextual information from diverse samples in the training stage. To this end, we introduce E$^2$STR, a STR model trained with context-rich scene text sequences, where the sequences are generated via our proposed in-context training strategy. E$^2$STR demonstrates that a regular-sized model is sufficient to achieve effective ICL capabilities in STR. Extensive experiments show that E$^2$STR exhibits remarkable training-free adaptation in various scenarios and outperforms even the fine-tuned state-of-the-art approaches on public benchmarks.
PDF

点此查看论文截图

ComPEFT: Compression for Communicating Parameter Efficient Updates via Sparsification and Quantization

Authors:Prateek Yadav, Leshem Choshen, Colin Raffel, Mohit Bansal

Parameter-efficient fine-tuning (PEFT) techniques make it possible to efficiently adapt a language model to create “expert” models that specialize to new tasks or domains. Recent techniques in model merging and compositional generalization leverage these expert models by dynamically composing modules to improve zero/few-shot generalization. Despite the efficiency of PEFT methods, the size of expert models can make it onerous to retrieve expert models per query over high-latency networks like the Internet or serve multiple experts on a single GPU. To address these issues, we present ComPEFT, a novel method for compressing fine-tuning residuals (task vectors) of PEFT based models. ComPEFT employs sparsification and ternary quantization to reduce the size of the PEFT module without performing any additional retraining while preserving or enhancing model performance. In extensive evaluation across T5, T0, and LLaMA-based models with 200M - 65B parameters, ComPEFT achieves compression ratios of 8x - 50x. In particular, we show that ComPEFT improves with scale - stronger models exhibit higher compressibility and better performance. For example, we show that ComPEFT applied to LLaMA outperforms QLoRA by 4.16% on MMLU with a storage size reduction of up to 26x. In addition, we show that the compressed experts produced by ComPEFT maintain few-shot compositional generalization capabilities, facilitate efficient communication and computation, and exhibit enhanced performance when merged. Lastly, we provide an analysis of different method components, compare it with other PEFT methods, and test ComPEFT’s efficacy for compressing the residual of full-finetuning. Our code is available at https://github.com/prateeky2806/compeft.
PDF 25 Pages, 6 Figures, 16 Tables

点此查看论文截图

DA-STC: Domain Adaptive Video Semantic Segmentation via Spatio-Temporal Consistency

Authors:Zhe Zhang, Gaochang Wu, Jing Zhang, Chunhua Shen, Dacheng Tao, Tianyou Chai

Video semantic segmentation is a pivotal aspect of video representation learning. However, significant domain shifts present a challenge in effectively learning invariant spatio-temporal features across the labeled source domain and unlabeled target domain for video semantic segmentation. To solve the challenge, we propose a novel DA-STC method for domain adaptive video semantic segmentation, which incorporates a bidirectional multi-level spatio-temporal fusion module and a category-aware spatio-temporal feature alignment module to facilitate consistent learning for domain-invariant features. Firstly, we perform bidirectional spatio-temporal fusion at the image sequence level and shallow feature level, leading to the construction of two fused intermediate video domains. This prompts the video semantic segmentation model to consistently learn spatio-temporal features of shared patch sequences which are influenced by domain-specific contexts, thereby mitigating the feature gap between the source and target domain. Secondly, we propose a category-aware feature alignment module to promote the consistency of spatio-temporal features, facilitating adaptation to the target domain. Specifically, we adaptively aggregate the domain-specific deep features of each category along spatio-temporal dimensions, which are further constrained to achieve cross-domain intra-class feature alignment and inter-class feature separation. Extensive experiments demonstrate the effectiveness of our method, which achieves state-of-the-art mIOUs on multiple challenging benchmarks. Furthermore, we extend the proposed DA-STC to the image domain, where it also exhibits superior performance for domain adaptive semantic segmentation. The source code and models will be made available at \url{https://github.com/ZHE-SAPI/DA-STC}.
PDF 18 pages,9 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录