Domain Adaptation

2024-04-19 更新

Multimodal 3D Object Detection on Unseen Domains

Authors:Deepti Hegde, Suhas Lohit, Kuan-Chuan Peng, Michael J. Jones, Vishal M. Patel

LiDAR datasets for autonomous driving exhibit biases in properties such as point cloud density, range, and object dimensions. As a result, object detection networks trained and evaluated in different environments often experience performance degradation. Domain adaptation approaches assume access to unannotated samples from the test distribution to address this problem. However, in the real world, the exact conditions of deployment and access to samples representative of the test dataset may be unavailable while training. We argue that the more realistic and challenging formulation is to require robustness in performance to unseen target domains. We propose to address this problem in a two-pronged manner. First, we leverage paired LiDAR-image data present in most autonomous driving datasets to perform multimodal object detection. We suggest that working with multimodal features by leveraging both images and LiDAR point clouds for scene understanding tasks results in object detectors more robust to unseen domain shifts. Second, we train a 3D object detector to learn multimodal object features across different distributions and promote feature invariance across these source domains to improve generalizability to unseen target domains. To this end, we propose CLIX$^\text{3D}$, a multimodal fusion and supervised contrastive learning framework for 3D object detection that performs alignment of object features from same-class samples of different domains while pushing the features from different classes apart. We show that CLIX$^\text{3D}$ yields state-of-the-art domain generalization performance under multiple dataset shifts.
PDF technical report


Partial Large Kernel CNNs for Efficient Super-Resolution

Authors:Dongheon Lee, Seokju Yun, Youngmin Ro

Recently, in the super-resolution (SR) domain, transformers have outperformed CNNs with fewer FLOPs and fewer parameters since they can deal with long-range dependency and adaptively adjust weights based on instance. In this paper, we demonstrate that CNNs, although less focused on in the current SR domain, surpass Transformers in direct efficiency measures. By incorporating the advantages of Transformers into CNNs, we aim to achieve both computational efficiency and enhanced performance. However, using a large kernel in the SR domain, which mainly processes large images, incurs a large computational overhead. To overcome this, we propose novel approaches to employing the large kernel, which can reduce latency by 86\% compared to the naive large kernel, and leverage an Element-wise Attention module to imitate instance-dependent weights. As a result, we introduce Partial Large Kernel CNNs for Efficient Super-Resolution (PLKSR), which achieves state-of-the-art performance on four datasets at a scale of $\times$4, with reductions of 68.1\% in latency and 80.2\% in maximum GPU memory occupancy compared to SRFormer-light.


Generalizable Face Landmarking Guided by Conditional Face Warping

Authors:Jiayi Liang, Haotian Liu, Hongteng Xu, Dixin Luo

As a significant step for human face modeling, editing, and generation, face landmarking aims at extracting facial keypoints from images. A generalizable face landmarker is required in practice because real-world facial images, e.g., the avatars in animations and games, are often stylized in various ways. However, achieving generalizable face landmarking is challenging due to the diversity of facial styles and the scarcity of labeled stylized faces. In this study, we propose a simple but effective paradigm to learn a generalizable face landmarker based on labeled real human faces and unlabeled stylized faces. Our method learns the face landmarker as the key module of a conditional face warper. Given a pair of real and stylized facial images, the conditional face warper predicts a warping field from the real face to the stylized one, in which the face landmarker predicts the ending points of the warping field and provides us with high-quality pseudo landmarks for the corresponding stylized facial images. Applying an alternating optimization strategy, we learn the face landmarker to minimize $i)$ the discrepancy between the stylized faces and the warped real ones and $ii)$ the prediction errors of both real and pseudo landmarks. Experiments on various datasets show that our method outperforms existing state-of-the-art domain adaptation methods in face landmarking tasks, leading to a face landmarker with better generalizability. Code is available at}{
PDF Accepted in CVPR 2024


文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !