2024-01-19 更新

R-Judge: Benchmarking Safety Risk Awareness for LLM Agents

Authors:Tongxin Yuan, Zhiwei He, Lingzhong Dong, Yiming Wang, Ruijie Zhao, Tian Xia, Lizhen Xu, Binglin Zhou, Fangqi Li, Zhuosheng Zhang, Rui Wang, Gongshen Liu

Large language models (LLMs) have exhibited great potential in autonomously completing tasks across real-world applications. Despite this, these LLM agents introduce unexpected safety risks when operating in interactive environments. Instead of centering on LLM-generated content safety in most prior studies, this work addresses the imperative need for benchmarking the behavioral safety of LLM agents within diverse environments. We introduce R-Judge, a benchmark crafted to evaluate the proficiency of LLMs in judging safety risks given agent interaction records. R-Judge comprises 162 agent interaction records, encompassing 27 key risk scenarios among 7 application categories and 10 risk types. It incorporates human consensus on safety with annotated safety risk labels and high-quality risk descriptions. Utilizing R-Judge, we conduct a comprehensive evaluation of 8 prominent LLMs commonly employed as the backbone for agents. The best-performing model, GPT-4, achieves 72.29% in contrast to the human score of 89.38%, showing considerable room for enhancing the risk awareness of LLMs. Notably, leveraging risk descriptions as environment feedback significantly improves model performance, revealing the importance of salient safety risk feedback. Furthermore, we design an effective chain of safety analysis technique to help the judgment of safety risks and conduct an in-depth case study to facilitate future research. R-Judge is publicly available at https://github.com/Lordog/R-Judge.


GPT4Ego: Unleashing the Potential of Pre-trained Models for Zero-Shot Egocentric Action Recognition

Authors:Guangzhao Dai, Xiangbo Shu, Wenhao Wu

Vision-Language Models (VLMs), pre-trained on large-scale datasets, have shown impressive performance in various visual recognition tasks. This advancement paves the way for notable performance in Zero-Shot Egocentric Action Recognition (ZS-EAR). Typically, VLMs handle ZS-EAR as a global video-text matching task, which often leads to suboptimal alignment of vision and linguistic knowledge. We propose a refined approach for ZS-EAR using VLMs, emphasizing fine-grained concept-description alignment that capitalizes on the rich semantic and contextual details in egocentric videos. In this paper, we introduce GPT4Ego, a straightforward yet remarkably potent VLM framework for ZS-EAR, designed to enhance the fine-grained alignment of concept and description between vision and language. Extensive experiments demonstrate GPT4Ego significantly outperforms existing VLMs on three large-scale egocentric video benchmarks, i.e., EPIC-KITCHENS-100 (33.2%, +9.4%), EGTEA (39.6%, +5.5%), and CharadesEgo (31.5%, +2.6%).


Large Language Models for Scientific Information Extraction: An Empirical Study for Virology

Authors:Mahsa Shamsabadi, Jennifer D’Souza, Sören Auer

In this paper, we champion the use of structured and semantic content representation of discourse-based scholarly communication, inspired by tools like Wikipedia infoboxes or structured Amazon product descriptions. These representations provide users with a concise overview, aiding scientists in navigating the dense academic landscape. Our novel automated approach leverages the robust text generation capabilities of LLMs to produce structured scholarly contribution summaries, offering both a practical solution and insights into LLMs’ emergent abilities. For LLMs, the prime focus is on improving their general intelligence as conversational agents. We argue that these models can also be applied effectively in information extraction (IE), specifically in complex IE tasks within terse domains like Science. This paradigm shift replaces the traditional modular, pipelined machine learning approach with a simpler objective expressed through instructions. Our results show that finetuned FLAN-T5 with 1000x fewer parameters than the state-of-the-art GPT-davinci is competitive for the task.
PDF 8 pages, 6 figures, Accepted as Findings of the ACL: EACL 2024


DiffusionGPT: LLM-Driven Text-to-Image Generation System

Authors:Jie Qin, Jie Wu, Weifeng Chen, Yuxi Ren, Huixia Li, Hefeng Wu, Xuefeng Xiao, Rui Wang, Shilei Wen

Diffusion models have opened up new avenues for the field of image generation, resulting in the proliferation of high-quality models shared on open-source platforms. However, a major challenge persists in current text-to-image systems are often unable to handle diverse inputs, or are limited to single model results. Current unified attempts often fall into two orthogonal aspects: i) parse Diverse Prompts in input stage; ii) activate expert model to output. To combine the best of both worlds, we propose DiffusionGPT, which leverages Large Language Models (LLM) to offer a unified generation system capable of seamlessly accommodating various types of prompts and integrating domain-expert models. DiffusionGPT constructs domain-specific Trees for various generative models based on prior knowledge. When provided with an input, the LLM parses the prompt and employs the Trees-of-Thought to guide the selection of an appropriate model, thereby relaxing input constraints and ensuring exceptional performance across diverse domains. Moreover, we introduce Advantage Databases, where the Tree-of-Thought is enriched with human feedback, aligning the model selection process with human preferences. Through extensive experiments and comparisons, we demonstrate the effectiveness of DiffusionGPT, showcasing its potential for pushing the boundaries of image synthesis in diverse domains.


Spatial-Temporal Large Language Model for Traffic Prediction

Authors:Chenxi Liu, Sun Yang, Qianxiong Xu, Zhishuai Li, Cheng Long, Ziyue Li, Rui Zhao

Traffic prediction, a critical component for intelligent transportation systems, endeavors to foresee future traffic at specific locations using historical data. Although existing traffic prediction models often emphasize developing complex neural network structures, their accuracy has not seen improvements accordingly. Recently, Large Language Models (LLMs) have shown outstanding capabilities in time series analysis. Differing from existing models, LLMs progress mainly through parameter expansion and extensive pre-training while maintaining their fundamental structures. In this paper, we propose a Spatial-Temporal Large Language Model (ST-LLM) for traffic prediction. Specifically, ST-LLM redefines the timesteps at each location as tokens and incorporates a spatial-temporal embedding module to learn the spatial location and global temporal representations of tokens. Then these representations are fused to provide each token with unified spatial and temporal information. Furthermore, we propose a novel partially frozen attention strategy of the LLM, which is designed to capture spatial-temporal dependencies for traffic prediction. Comprehensive experiments on real traffic datasets offer evidence that ST-LLM outperforms state-of-the-art models. Notably, the ST-LLM also exhibits robust performance in both few-shot and zero-shot prediction scenarios.


Beyond Reference-Based Metrics: Analyzing Behaviors of Open LLMs on Data-to-Text Generation

Authors:Zdeněk Kasner, Ondřej Dušek

We investigate to which extent open large language models (LLMs) can generate coherent and relevant text from structured data. To prevent bias from benchmarks leaked into LLM training data, we collect Quintd-1: an ad-hoc benchmark for five data-to-text (D2T) generation tasks, consisting of structured data records in standard formats gathered from public APIs. We leverage reference-free evaluation metrics and LLMs’ in-context learning capabilities, allowing us to test the models with no human-written references. Our evaluation focuses on annotating semantic accuracy errors on token-level, combining human annotators and a metric based on GPT-4. Our systematic examination of the models’ behavior across domains and tasks suggests that state-of-the-art open LLMs with 7B parameters can generate fluent and coherent text from various standard data formats in zero-shot settings. However, we also show that semantic accuracy of the outputs remains a major issue: on our benchmark, 80% of outputs of open LLMs contain a semantic error according to human annotators (91% according to GPT-4). Our code, data, and model outputs are available at https://d2t-llm.github.io.
PDF 26 pages


ChatQA: Building GPT-4 Level Conversational QA Models

Authors:Zihan Liu, Wei Ping, Rajarshi Roy, Peng Xu, Mohammad Shoeybi, Bryan Catanzaro

In this work, we introduce ChatQA, a family of conversational question answering (QA) models, that obtain GPT-4 level accuracies. Specifically, we propose a two-stage instruction tuning method that can significantly improve the zero-shot conversational QA results from large language models (LLMs). To handle retrieval in conversational QA, we fine-tune a dense retriever on a multi-turn QA dataset, which provides comparable results to using the state-of-the-art query rewriting model while largely reducing deployment cost. Notably, our ChatQA-70B can outperform GPT-4 in terms of average score on 10 conversational QA datasets (54.14 vs. 53.90), without relying on any synthetic data from OpenAI GPT models.


文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !