Domain Adaptation


2024-01-19 更新

Improving Domain Adaptation through Extended-Text Reading Comprehension

Authors:Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng, Feng Sun, Qi Zhang, Deqing Wang, Fuzhen Zhuang

To enhance the domain-specific capabilities of large language models, continued pre-training on a domain-specific corpus is a prevalent method. Recent work demonstrates that adapting models using reading comprehension data formatted by regex-based patterns can significantly improve performance on domain-specific tasks. However, regex-based patterns are incapable of parsing raw corpora using domain-specific knowledge. Furthermore, the question and answer pairs are extracted directly from the corpus in predefined formats offers limited context. To address this limitation, we improve reading comprehension via LLM and clustering. LLM focuses on leveraging domain knowledge within the corpus to refine comprehension stage, while clustering supplies relevant knowledge by extending the context to enrich reading stage. Additionally, our method incorporates parameter-efficient fine-tuning to improve the efficiency of domain adaptation. In comparison to AdaptLLM, our method achieves an improvement exceeding 5% in domain-specific tasks. Our code will available at https://github.com/microsoft/LMOps.
PDF Work in Progress

点此查看论文截图

Learning to Generalize over Subpartitions for Heterogeneity-aware Domain Adaptive Nuclei Segmentation

Authors:Jianan Fan, Dongnan Liu, Hang Chang, Weidong Cai

Annotation scarcity and cross-modality/stain data distribution shifts are two major obstacles hindering the application of deep learning models for nuclei analysis, which holds a broad spectrum of potential applications in digital pathology. Recently, unsupervised domain adaptation (UDA) methods have been proposed to mitigate the distributional gap between different imaging modalities for unsupervised nuclei segmentation in histopathology images. However, existing UDA methods are built upon the assumption that data distributions within each domain should be uniform. Based on the over-simplified supposition, they propose to align the histopathology target domain with the source domain integrally, neglecting severe intra-domain discrepancy over subpartitions incurred by mixed cancer types and sampling organs. In this paper, for the first time, we propose to explicitly consider the heterogeneity within the histopathology domain and introduce open compound domain adaptation (OCDA) to resolve the crux. In specific, a two-stage disentanglement framework is proposed to acquire domain-invariant feature representations at both image and instance levels. The holistic design addresses the limitations of existing OCDA approaches which struggle to capture instance-wise variations. Two regularization strategies are specifically devised herein to leverage the rich subpartition-specific characteristics in histopathology images and facilitate subdomain decomposition. Moreover, we propose a dual-branch nucleus shape and structure preserving module to prevent nucleus over-generation and deformation in the synthesized images. Experimental results on both cross-modality and cross-stain scenarios over a broad range of diverse datasets demonstrate the superiority of our method compared with state-of-the-art UDA and OCDA methods.
PDF

点此查看论文截图

Leveraging Biases in Large Language Models: “bias-kNN’’ for Effective Few-Shot Learning

Authors:Yong Zhang, Hanzhang Li, Zhitao Li, Ning Cheng, Ming Li, Jing Xiao, Jianzong Wang

Large Language Models (LLMs) have shown significant promise in various applications, including zero-shot and few-shot learning. However, their performance can be hampered by inherent biases. Instead of traditionally sought methods that aim to minimize or correct these biases, this study introduces a novel methodology named bias-kNN''. This approach capitalizes on the biased outputs, harnessing them as primary features for kNN and supplementing with gold labels. Our comprehensive evaluations, spanning diverse domain text classification datasets and different GPT-2 model sizes, indicate the adaptability and efficacy of thebias-kNN’’ method. Remarkably, this approach not only outperforms conventional in-context learning in few-shot scenarios but also demonstrates robustness across a spectrum of samples, templates and verbalizers. This study, therefore, presents a unique perspective on harnessing biases, transforming them into assets for enhanced model performance.
PDF Accepted by the 49th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2024)

点此查看论文截图

BlenDA: Domain Adaptive Object Detection through diffusion-based blending

Authors:Tzuhsuan Huang, Chen-Che Huang, Chung-Hao Ku, Jun-Cheng Chen

Unsupervised domain adaptation (UDA) aims to transfer a model learned using labeled data from the source domain to unlabeled data in the target domain. To address the large domain gap issue between the source and target domains, we propose a novel regularization method for domain adaptive object detection, BlenDA, by generating the pseudo samples of the intermediate domains and their corresponding soft domain labels for adaptation training. The intermediate samples are generated by dynamically blending the source images with their corresponding translated images using an off-the-shelf pre-trained text-to-image diffusion model which takes the text label of the target domain as input and has demonstrated superior image-to-image translation quality. Based on experimental results from two adaptation benchmarks, our proposed approach can significantly enhance the performance of the state-of-the-art domain adaptive object detector, Adversarial Query Transformer (AQT). Particularly, in the Cityscapes to Foggy Cityscapes adaptation, we achieve an impressive 53.4% mAP on the Foggy Cityscapes dataset, surpassing the previous state-of-the-art by 1.5%. It is worth noting that our proposed method is also applicable to various paradigms of domain adaptive object detection. The code is available at:https://github.com/aiiu-lab/BlenDA
PDF ICASSP(2024):2024 IEEE International Conference on Acoustics, Speech and Signal Processing

点此查看论文截图

AutoFT: Robust Fine-Tuning by Optimizing Hyperparameters on OOD Data

Authors:Caroline Choi, Yoonho Lee, Annie Chen, Allan Zhou, Aditi Raghunathan, Chelsea Finn

Foundation models encode rich representations that can be adapted to a desired task by fine-tuning on task-specific data. However, fine-tuning a model on one particular data distribution often compromises the model’s original performance on other distributions. Current methods for robust fine-tuning utilize hand-crafted regularization techniques to constrain the fine-tuning process towards the base foundation model. Yet, it is hard to precisely specify what characteristics of the foundation model to retain during fine-tuning, as this depends on how the pre-training, fine-tuning, and evaluation data distributions relate to each other. We propose AutoFT, a data-driven approach for guiding foundation model fine-tuning. AutoFT optimizes fine-tuning hyperparameters to maximize performance on a small out-of-distribution (OOD) validation set. To guide fine-tuning in a granular way, AutoFT searches a highly expressive hyperparameter space that includes weight coefficients for many different losses, in addition to learning rate and weight decay values. We evaluate AutoFT on nine natural distribution shifts which include domain shifts and subpopulation shifts. Our experiments show that AutoFT significantly improves generalization to new OOD data, outperforming existing robust fine-tuning methods. Notably, AutoFT achieves new state-of-the-art performance on the WILDS-iWildCam and WILDS-FMoW benchmarks, outperforming the previous best methods by $6.0\%$ and $1.5\%$, respectively.
PDF 16 pages

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录