2024-01-17 更新

AesBench: An Expert Benchmark for Multimodal Large Language Models on Image Aesthetics Perception

Authors:Yipo Huang, Quan Yuan, Xiangfei Sheng, Zhichao Yang, Haoning Wu, Pengfei Chen, Yuzhe Yang, Leida Li, Weisi Lin

With collective endeavors, multimodal large language models (MLLMs) are undergoing a flourishing development. However, their performances on image aesthetics perception remain indeterminate, which is highly desired in real-world applications. An obvious obstacle lies in the absence of a specific benchmark to evaluate the effectiveness of MLLMs on aesthetic perception. This blind groping may impede the further development of more advanced MLLMs with aesthetic perception capacity. To address this dilemma, we propose AesBench, an expert benchmark aiming to comprehensively evaluate the aesthetic perception capacities of MLLMs through elaborate design across dual facets. (1) We construct an Expert-labeled Aesthetics Perception Database (EAPD), which features diversified image contents and high-quality annotations provided by professional aesthetic experts. (2) We propose a set of integrative criteria to measure the aesthetic perception abilities of MLLMs from four perspectives, including Perception (AesP), Empathy (AesE), Assessment (AesA) and Interpretation (AesI). Extensive experimental results underscore that the current MLLMs only possess rudimentary aesthetic perception ability, and there is still a significant gap between MLLMs and humans. We hope this work can inspire the community to engage in deeper explorations on the aesthetic potentials of MLLMs. Source data will be available at https://github.com/yipoh/AesBench.


DAPT: A Dual Attention Framework for Parameter-Efficient Continual Learning of Large Language Models

Authors:Weixiang Zhao, Shilong Wang, Yulin Hu, Yanyan Zhao, Bing Qin, Xuanyu Zhang, Qing Yang, Dongliang Xu, Wanxiang Che

The continual learning (CL) ability is vital for deploying large language models (LLMs) in the dynamic world. Based on parameter-efficient tuning (PET), existing methods devise the learning module and the selection module to handle the challenges of catastrophic forgetting (CF) and knowledge transfer (KT) in CL. The learning module allocates separate PET blocks for each continually emerged task and the selection module function to choose the correct one for the input at testing time. However, there are limitations in their deigns of both modules and they ignore the potential of aligning the two module to address CF and KT simultaneously. To this end, we propose a novel Dual Attention Framework , to align the PET learning and selection via the Dual Attentive Learning\&Selection module. Extensive Experiments on two CL benchmarks demonstrate the superiority of DAPT to resist CF and facilitate KT at the same time. Moreover, DAPT exhibits the superiority when we scale it to different model sizes (from 770M to 11B) and unseen tasks.
PDF work in progress


RoTBench: A Multi-Level Benchmark for Evaluating the Robustness of Large Language Models in Tool Learning

Authors:Junjie Ye, Yilong Wu, Songyang Gao, Sixian Li, Guanyu Li, Xiaoran Fan, Qi Zhang, Tao Gui, Xuanjing Huang

Tool learning has generated widespread interest as a vital means of interaction between Large Language Models (LLMs) and the physical world. Current research predominantly emphasizes LLMs’ capacity to utilize tools in well-structured environments while overlooking their stability when confronted with the inevitable noise of the real world. To bridge this gap, we introduce RoTBench, a multi-level benchmark for evaluating the robustness of LLMs in tool learning. Specifically, we establish five external environments, each featuring varying levels of noise (i.e., Clean, Slight, Medium, Heavy, and Union), providing an in-depth analysis of the model’s resilience across three critical phases: tool selection, parameter identification, and content filling. Experiments involving six widely-used models underscore the urgent necessity for enhancing the robustness of LLMs in tool learning. For instance, the performance of GPT-4 even drops significantly from 80.00 to 58.10 when there is no substantial change in manual accuracy. More surprisingly, the noise correction capability inherent in the GPT family paradoxically impedes its adaptability in the face of mild noise. In light of these findings, we propose RoTTuning, a strategy that enriches the diversity of training environments to bolster the robustness of LLMs in tool learning. The code and data are available at https://github.com/Junjie-Ye/RoTBench.


Salute the Classic: Revisiting Challenges of Machine Translation in the Age of Large Language Models

Authors:Jianhui Pang, Fanghua Ye, Longyue Wang, Dian Yu, Derek F. Wong, Shuming Shi, Zhaopeng Tu

The evolution of Neural Machine Translation (NMT) has been significantly influenced by six core challenges (Koehn and Knowles, 2017), which have acted as benchmarks for progress in this field. This study revisits these challenges, offering insights into their ongoing relevance in the context of advanced Large Language Models (LLMs): domain mismatch, amount of parallel data, rare word prediction, translation of long sentences, attention model as word alignment, and sub-optimal beam search. Our empirical findings indicate that LLMs effectively lessen the reliance on parallel data for major languages in the pretraining phase. Additionally, the LLM-based translation system significantly enhances the translation of long sentences that contain approximately 80 words and shows the capability to translate documents of up to 512 words. However, despite these significant improvements, the challenges of domain mismatch and prediction of rare words persist. While the challenges of word alignment and beam search, specifically associated with NMT, may not apply to LLMs, we identify three new challenges for LLMs in translation tasks: inference efficiency, translation of low-resource languages in the pretraining phase, and human-aligned evaluation. The datasets and models are released at https://github.com/pangjh3/LLM4MT.
PDF 17 pages


Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation

Authors:Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton Murray, Young Jin Kim

Moderate-sized large language models (LLMs) — those with 7B or 13B parameters — exhibit promising machine translation (MT) performance. However, even the top-performing 13B LLM-based translation models, like ALMA, does not match the performance of state-of-the-art conventional encoder-decoder translation models or larger-scale LLMs such as GPT-4. In this study, we bridge this performance gap. We first assess the shortcomings of supervised fine-tuning for LLMs in the MT task, emphasizing the quality issues present in the reference data, despite being human-generated. Then, in contrast to SFT which mimics reference translations, we introduce Contrastive Preference Optimization (CPO), a novel approach that trains models to avoid generating adequate but not perfect translations. Applying CPO to ALMA models with only 22K parallel sentences and 12M parameters yields significant improvements. The resulting model, called ALMA-R, can match or exceed the performance of the WMT competition winners and GPT-4 on WMT’21, WMT’22 and WMT’23 test datasets.


文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !