2024-01-12 更新

Part-of-Speech Tagger for Bodo Language using Deep Learning approach

Authors:Dhrubajyoti Pathak, Sanjib Narzary, Sukumar Nandi, Bidisha Som

Language Processing systems such as Part-of-speech tagging, Named entity recognition, Machine translation, Speech recognition, and Language modeling (LM) are well-studied in high-resource languages. Nevertheless, research on these systems for several low-resource languages, including Bodo, Mizo, Nagamese, and others, is either yet to commence or is in its nascent stages. Language model plays a vital role in the downstream tasks of modern NLP. Extensive studies are carried out on LMs for high-resource languages. Nevertheless, languages such as Bodo, Rabha, and Mising continue to lack coverage. In this study, we first present BodoBERT, a language model for the Bodo language. To the best of our knowledge, this work is the first such effort to develop a language model for Bodo. Secondly, we present an ensemble DL-based POS tagging model for Bodo. The POS tagging model is based on combinations of BiLSTM with CRF and stacked embedding of BodoBERT with BytePairEmbeddings. We cover several language models in the experiment to see how well they work in POS tagging tasks. The best-performing model achieves an F1 score of 0.8041. A comparative experiment was also conducted on Assamese POS taggers, considering that the language is spoken in the same region as Bodo.
PDF Accepted to Natural Language Engineering


TeLeS: Temporal Lexeme Similarity Score to Estimate Confidence in End-to-End ASR

Authors:Nagarathna Ravi, Thishyan Raj T, Vipul Arora

Confidence estimation of predictions from an End-to-End (E2E) Automatic Speech Recognition (ASR) model benefits ASR’s downstream and upstream tasks. Class-probability-based confidence scores do not accurately represent the quality of overconfident ASR predictions. An ancillary Confidence Estimation Model (CEM) calibrates the predictions. State-of-the-art (SOTA) solutions use binary target scores for CEM training. However, the binary labels do not reveal the granular information of predicted words, such as temporal alignment between reference and hypothesis and whether the predicted word is entirely incorrect or contains spelling errors. Addressing this issue, we propose a novel Temporal-Lexeme Similarity (TeLeS) confidence score to train CEM. To address the data imbalance of target scores while training CEM, we use shrinkage loss to focus on hard-to-learn data points and minimise the impact of easily learned data points. We conduct experiments with ASR models trained in three languages, namely Hindi, Tamil, and Kannada, with varying training data sizes. Experiments show that TeLeS generalises well across domains. To demonstrate the applicability of the proposed method, we formulate a TeLeS-based Acquisition (TeLeS-A) function for sampling uncertainty in active learning. We observe a significant reduction in the Word Error Rate (WER) as compared to SOTA methods.
PDF Submitted to IEEE/ACM Transactions on Audio, Speech, and Language Processing


Single-Microphone Speaker Separation and Voice Activity Detection in Noisy and Reverberant Environments

Authors:Renana Opochinsky, Mordehay Moradi, Sharon Gannot

Speech separation involves extracting an individual speaker’s voice from a multi-speaker audio signal. The increasing complexity of real-world environments, where multiple speakers might converse simultaneously, underscores the importance of effective speech separation techniques. This work presents a single-microphone speaker separation network with TF attention aiming at noisy and reverberant environments. We dub this new architecture as Separation TF Attention Network (Sep-TFAnet). In addition, we present a variant of the separation network, dubbed $ \text{Sep-TFAnet}^{\text{VAD}}$, which incorporates a voice activity detector (VAD) into the separation network. The separation module is based on a temporal convolutional network (TCN) backbone inspired by the Conv-Tasnet architecture with multiple modifications. Rather than a learned encoder and decoder, we use short-time Fourier transform (STFT) and inverse short-time Fourier transform (iSTFT) for the analysis and synthesis, respectively. Our system is specially developed for human-robotic interactions and should support online mode. The separation capabilities of $ \text{Sep-TFAnet}^{\text{VAD}}$ and Sep-TFAnet were evaluated and extensively analyzed under several acoustic conditions, demonstrating their advantages over competing methods. Since separation networks trained on simulated data tend to perform poorly on real recordings, we also demonstrate the ability of the proposed scheme to better generalize to realistic examples recorded in our acoustic lab by a humanoid robot. Project page: https://Sep-TFAnet.github.io


Creating Personalized Synthetic Voices from Articulation Impaired Speech Using Augmented Reconstruction Loss

Authors:Yusheng Tian, Jingyu Li, Tan Lee

This research is about the creation of personalized synthetic voices for head and neck cancer survivors. It is focused particularly on tongue cancer patients whose speech might exhibit severe articulation impairment. Our goal is to restore normal articulation in the synthesized speech, while maximally preserving the target speaker’s individuality in terms of both the voice timbre and speaking style. This is formulated as a task of learning from noisy labels. We propose to augment the commonly used speech reconstruction loss with two additional terms. The first term constitutes a regularization loss that mitigates the impact of distorted articulation in the training speech. The second term is a consistency loss that encourages correct articulation in the generated speech. These additional loss terms are obtained from frame-level articulation scores of original and generated speech, which are derived using a separately trained phone classifier. Experimental results on a real case of tongue cancer patient confirm that the synthetic voice achieves comparable articulation quality to unimpaired natural speech, while effectively maintaining the target speaker’s individuality. Audio samples are available at https://myspeechproject.github.io/ArticulationRepair/.
PDF Accepted to ICASSP 2024


SpeechAgents: Human-Communication Simulation with Multi-Modal Multi-Agent Systems

Authors:Dong Zhang, Zhaowei Li, Pengyu Wang, Xin Zhang, Yaqian Zhou, Xipeng Qiu

Human communication is a complex and diverse process that not only involves multiple factors such as language, commonsense, and cultural backgrounds but also requires the participation of multimodal information, such as speech. Large Language Model (LLM)-based multi-agent systems have demonstrated promising performance in simulating human society. Can we leverage LLM-based multi-agent systems to simulate human communication? However, current LLM-based multi-agent systems mainly rely on text as the primary medium. In this paper, we propose SpeechAgents, a multi-modal LLM based multi-agent system designed for simulating human communication. SpeechAgents utilizes multi-modal LLM as the control center for individual agent and employes multi-modal signals as the medium for exchanged messages among agents. Additionally, we propose Multi-Agent Tuning to enhance the multi-agent capabilities of LLM without compromising general abilities. To strengthen and evaluate the effectiveness of human communication simulation, we build the Human-Communication Simulation Benchmark. Experimental results demonstrate that SpeechAgents can simulate human communication dialogues with consistent content, authentic rhythm, and rich emotions and demonstrate excellent scalability even with up to 25 agents, which can apply to tasks such as drama creation and audio novels generation. Code and models will be open-sourced at https://github. com/0nutation/SpeechAgents
PDF work in progress


High-precision Voice Search Query Correction via Retrievable Speech-text Embedings

Authors:Christopher Li, Gary Wang, Kyle Kastner, Heng Su, Allen Chen, Andrew Rosenberg, Zhehuai Chen, Zelin Wu, Leonid Velikovich, Pat Rondon, Diamantino Caseiro, Petar Aleksic

Automatic speech recognition (ASR) systems can suffer from poor recall for various reasons, such as noisy audio, lack of sufficient training data, etc. Previous work has shown that recall can be improved by retrieving rewrite candidates from a large database of likely, contextually-relevant alternatives to the hypothesis text using nearest-neighbors search over embeddings of the ASR hypothesis text to correct and candidate corrections. However, ASR-hypothesis-based retrieval can yield poor precision if the textual hypotheses are too phonetically dissimilar to the transcript truth. In this paper, we eliminate the hypothesis-audio mismatch problem by querying the correction database directly using embeddings derived from the utterance audio; the embeddings of the utterance audio and candidate corrections are produced by multimodal speech-text embedding networks trained to place the embedding of the audio of an utterance and the embedding of its corresponding textual transcript close together. After locating an appropriate correction candidate using nearest-neighbor search, we score the candidate with its speech-text embedding distance before adding the candidate to the original n-best list. We show a relative word error rate (WER) reduction of 6% on utterances whose transcripts appear in the candidate set, without increasing WER on general utterances.


FADI-AEC: Fast Score Based Diffusion Model Guided by Far-end Signal for Acoustic Echo Cancellation

Authors:Yang Liu, Li Wan, Yun Li, Yiteng Huang, Ming Sun, James Luan, Yangyang Shi, Xin Lei

Despite the potential of diffusion models in speech enhancement, their deployment in Acoustic Echo Cancellation (AEC) has been restricted. In this paper, we propose DI-AEC, pioneering a diffusion-based stochastic regeneration approach dedicated to AEC. Further, we propose FADI-AEC, fast score-based diffusion AEC framework to save computational demands, making it favorable for edge devices. It stands out by running the score model once per frame, achieving a significant surge in processing efficiency. Apart from that, we introduce a novel noise generation technique where far-end signals are utilized, incorporating both far-end and near-end signals to refine the score model’s accuracy. We test our proposed method on the ICASSP2023 Microsoft deep echo cancellation challenge evaluation dataset, where our method outperforms some of the end-to-end methods and other diffusion based echo cancellation methods.


Towards Online Sign Language Recognition and Translation

Authors:Ronglai Zuo, Fangyun Wei, Brian Mak

The objective of sign language recognition is to bridge the communication gap between the deaf and the hearing. Numerous previous works train their models using the well-established connectionist temporal classification (CTC) loss. During the inference stage, the CTC-based models typically take the entire sign video as input to make predictions. This type of inference scheme is referred to as offline recognition. In contrast, while mature speech recognition systems can efficiently recognize spoken words on the fly, sign language recognition still falls short due to the lack of practical online solutions. In this work, we take the first step towards filling this gap. Our approach comprises three phases: 1) developing a sign language dictionary encompassing all glosses present in a target sign language dataset; 2) training an isolated sign language recognition model on augmented signs using both conventional classification loss and our novel saliency loss; 3) employing a sliding window approach on the input sign sequence and feeding each sign clip to the well-optimized model for online recognition. Furthermore, our online recognition model can be extended to boost the performance of any offline model, and to support online translation by appending a gloss-to-text network onto the recognition model. By integrating our online framework with the previously best-performing offline model, TwoStream-SLR, we achieve new state-of-the-art performance on three benchmarks: Phoenix-2014, Phoenix-2014T, and CSL-Daily. Code and models will be available at https://github.com/FangyunWei/SLRT


Useful Blunders: Can Automated Speech Recognition Errors Improve Downstream Dementia Classification?

Authors:Changye Li, Weizhe Xu, Trevor Cohen, Serguei Pakhomov

\textbf{Objectives}: We aimed to investigate how errors from automatic speech recognition (ASR) systems affect dementia classification accuracy, specifically in the Cookie Theft'' picture description task. We aimed to assess whether imperfect ASR-generated transcripts could provide valuable information for distinguishing between language samples from cognitively healthy individuals and those with Alzheimer's disease (AD). \textbf{Methods}: We conducted experiments using various ASR models, refining their transcripts with post-editing techniques. Both these imperfect ASR transcripts and manually transcribed ones were used as inputs for the downstream dementia classification. We conducted comprehensive error analysis to compare model performance and assess ASR-generated transcript effectiveness in dementia classification. \textbf{Results}: Imperfect ASR-generated transcripts surprisingly outperformed manual transcription for distinguishing between individuals with AD and those without in theCookie Theft’’ task. These ASR-based models surpassed the previous state-of-the-art approach, indicating that ASR errors may contain valuable cues related to dementia. The synergy between ASR and classification models improved overall accuracy in dementia classification. \textbf{Conclusion}: Imperfect ASR transcripts effectively capture linguistic anomalies linked to dementia, improving accuracy in classification tasks. This synergy between ASR and classification models underscores ASR’s potential as a valuable tool in assessing cognitive impairment and related clinical applications.
PDF To appear on Journal of Biomedical Informatics


UCorrect: An Unsupervised Framework for Automatic Speech Recognition Error Correction

Authors:Jiaxin Guo, Minghan Wang, Xiaosong Qiao, Daimeng Wei, Hengchao Shang, Zongyao Li, Zhengzhe Yu, Yinglu Li, Chang Su, Min Zhang, Shimin Tao, Hao Yang

Error correction techniques have been used to refine the output sentences from automatic speech recognition (ASR) models and achieve a lower word error rate (WER). Previous works usually adopt end-to-end models and has strong dependency on Pseudo Paired Data and Original Paired Data. But when only pre-training on Pseudo Paired Data, previous models have negative effect on correction. While fine-tuning on Original Paired Data, the source side data must be transcribed by a well-trained ASR model, which takes a lot of time and not universal. In this paper, we propose UCorrect, an unsupervised Detector-Generator-Selector framework for ASR Error Correction. UCorrect has no dependency on the training data mentioned before. The whole procedure is first to detect whether the character is erroneous, then to generate some candidate characters and finally to select the most confident one to replace the error character. Experiments on the public AISHELL-1 dataset and WenetSpeech dataset show the effectiveness of UCorrect for ASR error correction: 1) it achieves significant WER reduction, achieves 6.83\% even without fine-tuning and 14.29\% after fine-tuning; 2) it outperforms the popular NAR correction models by a large margin with a competitive low latency; and 3) it is an universal method, as it reduces all WERs of the ASR model with different decoding strategies and reduces all WERs of ASR models trained on different scale datasets.
PDF Accepted in ICASSP 2023


R-BI: Regularized Batched Inputs enhance Incremental Decoding Framework for Low-Latency Simultaneous Speech Translation

Authors:Jiaxin Guo, Zhanglin Wu, Zongyao Li, Hengchao Shang, Daimeng Wei, Xiaoyu Chen, Zhiqiang Rao, Shaojun Li, Hao Yang

Incremental Decoding is an effective framework that enables the use of an offline model in a simultaneous setting without modifying the original model, making it suitable for Low-Latency Simultaneous Speech Translation. However, this framework may introduce errors when the system outputs from incomplete input. To reduce these output errors, several strategies such as Hold-$n$, LA-$n$, and SP-$n$ can be employed, but the hyper-parameter $n$ needs to be carefully selected for optimal performance. Moreover, these strategies are more suitable for end-to-end systems than cascade systems. In our paper, we propose a new adaptable and efficient policy named “Regularized Batched Inputs”. Our method stands out by enhancing input diversity to mitigate output errors. We suggest particular regularization techniques for both end-to-end and cascade systems. We conducted experiments on IWSLT Simultaneous Speech Translation (SimulST) tasks, which demonstrate that our approach achieves low latency while maintaining no more than 2 BLEU points loss compared to offline systems. Furthermore, our SimulST systems attained several new state-of-the-art results in various language directions.
PDF Preprint


文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !