Face Swapping


2023-12-26 更新

DETER: Detecting Edited Regions for Deterring Generative Manipulations

Authors:Sai Wang, Ye Zhu, Ruoyu Wang, Amaya Dharmasiri, Olga Russakovsky, Yu Wu

Generative AI capabilities have grown substantially in recent years, raising renewed concerns about potential malicious use of generated data, or “deep fakes”. However, deep fake datasets have not kept up with generative AI advancements sufficiently to enable the development of deep fake detection technology which can meaningfully alert human users in real-world settings. Existing datasets typically use GAN-based models and introduce spurious correlations by always editing similar face regions. To counteract the shortcomings, we introduce DETER, a large-scale dataset for DETEcting edited image Regions and deterring modern advanced generative manipulations. DETER includes 300,000 images manipulated by four state-of-the-art generators with three editing operations: face swapping (a standard coarse image manipulation), inpainting (a novel manipulation for deep fake datasets), and attribute editing (a subtle fine-grained manipulation). While face swapping and attribute editing are performed on similar face regions such as eyes and nose, the inpainting operation can be performed on random image regions, removing the spurious correlations of previous datasets. Careful image post-processing is performed to ensure deep fakes in DETER look realistic, and human studies confirm that human deep fake detection rate on DETER is 20.4% lower than on other fake datasets. Equipped with the dataset, we conduct extensive experiments and break-down analysis using our rich annotations and improved benchmark protocols, revealing future directions and the next set of challenges in developing reliable regional fake detection models.
PDF First two authors contribute equally to this work. Project page at https://deter2024.github.io/deter/

点此查看论文截图

High-Fidelity Face Swapping with Style Blending

Authors:Xinyu Yang, Hongbo Bo

Face swapping has gained significant traction, driven by the plethora of human face synthesis facilitated by deep learning methods. However, previous face swapping methods that used generative adversarial networks (GANs) as backbones have faced challenges such as inconsistency in blending, distortions, artifacts, and issues with training stability. To address these limitations, we propose an innovative end-to-end framework for high-fidelity face swapping. First, we introduce a StyleGAN-based facial attributes encoder that extracts essential features from faces and inverts them into a latent style code, encapsulating indispensable facial attributes for successful face swapping. Second, we introduce an attention-based style blending module to effectively transfer Face IDs from source to target. To ensure accurate and quality transferring, a series of constraint measures including contrastive face ID learning, facial landmark alignment, and dual swap consistency is implemented. Finally, the blended style code is translated back to the image space via the style decoder, which is of high training stability and generative capability. Extensive experiments on the CelebA-HQ dataset highlight the superior visual quality of generated images from our face-swapping methodology when compared to other state-of-the-art methods, and the effectiveness of each proposed module. Source code and weights will be publicly available.
PDF 4 pages

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录