强化学习


2023-12-25 更新

Critic-Guided Decision Transformer for Offline Reinforcement Learning

Authors:Yuanfu Wang, Chao Yang, Ying Wen, Yu Liu, Yu Qiao

Recent advancements in offline reinforcement learning (RL) have underscored the capabilities of Return-Conditioned Supervised Learning (RCSL), a paradigm that learns the action distribution based on target returns for each state in a supervised manner. However, prevailing RCSL methods largely focus on deterministic trajectory modeling, disregarding stochastic state transitions and the diversity of future trajectory distributions. A fundamental challenge arises from the inconsistency between the sampled returns within individual trajectories and the expected returns across multiple trajectories. Fortunately, value-based methods offer a solution by leveraging a value function to approximate the expected returns, thereby addressing the inconsistency effectively. Building upon these insights, we propose a novel approach, termed the Critic-Guided Decision Transformer (CGDT), which combines the predictability of long-term returns from value-based methods with the trajectory modeling capability of the Decision Transformer. By incorporating a learned value function, known as the critic, CGDT ensures a direct alignment between the specified target returns and the expected returns of actions. This integration bridges the gap between the deterministic nature of RCSL and the probabilistic characteristics of value-based methods. Empirical evaluations on stochastic environments and D4RL benchmark datasets demonstrate the superiority of CGDT over traditional RCSL methods. These results highlight the potential of CGDT to advance the state of the art in offline RL and extend the applicability of RCSL to a wide range of RL tasks.
PDF Accepted at AAAI 2024

点此查看论文截图

Benchmarking Multi-Agent Preference-based Reinforcement Learning for Human-AI Teaming

Authors:Siddhant Bhambri, Mudit Verma, Anil Murthy, Subbarao Kambhampati

Preference-based Reinforcement Learning (PbRL) is an active area of research, and has made significant strides in single-agent actor and in observer human-in-the-loop scenarios. However, its application within the co-operative multi-agent RL frameworks, where humans actively participate and express preferences for agent behavior, remains largely uncharted. We consider a two-agent (Human-AI) cooperative setup where both the agents are rewarded according to human’s reward function for the team. However, the agent does not have access to it, and instead, utilizes preference-based queries to elicit its objectives and human’s preferences for the robot in the human-robot team. We introduce the notion of Human-Flexibility, i.e. whether the human partner is amenable to multiple team strategies, with a special case being Specified Orchestration where the human has a single team policy in mind (most constrained case). We propose a suite of domains to study PbRL for Human-AI cooperative setup which explicitly require forced cooperation. Adapting state-of-the-art single-agent PbRL algorithms to our two-agent setting, we conduct a comprehensive benchmarking study across our domain suite. Our findings highlight the challenges associated with high degree of Human-Flexibility and the limited access to the human’s envisioned policy in PbRL for Human-AI cooperation. Notably, we observe that PbRL algorithms exhibit effective performance exclusively in the case of Specified Orchestration which can be seen as an upper bound PbRL performance for future research.
PDF

点此查看论文截图

Not All Tasks Are Equally Difficult: Multi-Task Reinforcement Learning with Dynamic Depth Routing

Authors:Jinmin He, Kai Li, Yifan Zang, Haobo Fu, Qiang Fu, Junliang Xing, Jian Cheng

Multi-task reinforcement learning endeavors to accomplish a set of different tasks with a single policy. To enhance data efficiency by sharing parameters across multiple tasks, a common practice segments the network into distinct modules and trains a routing network to recombine these modules into task-specific policies. However, existing routing approaches employ a fixed number of modules for all tasks, neglecting that tasks with varying difficulties commonly require varying amounts of knowledge. This work presents a Dynamic Depth Routing (D2R) framework, which learns strategic skipping of certain intermediate modules, thereby flexibly choosing different numbers of modules for each task. Under this framework, we further introduce a ResRouting method to address the issue of disparate routing paths between behavior and target policies during off-policy training. In addition, we design an automatic route-balancing mechanism to encourage continued routing exploration for unmastered tasks without disturbing the routing of mastered ones. We conduct extensive experiments on various robotics manipulation tasks in the Meta-World benchmark, where D2R achieves state-of-the-art performance with significantly improved learning efficiency.
PDF AAAI2024, with supplementary material

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录