NeRF


2023-11-25 更新

Implicit Event-RGBD Neural SLAM

Authors:Delin Qu, Chi Yan, Dong Wang, Jie Yin, Dan Xu, Bin Zhao, Xuelong Li

Implicit neural SLAM has achieved remarkable progress recently. Nevertheless, existing methods face significant challenges in non-ideal scenarios, such as motion blur or lighting variation, which often leads to issues like convergence failures, localization drifts, and distorted mapping. To address these challenges, we propose $\textbf{EN-SLAM}$, the first event-RGBD implicit neural SLAM framework, which effectively leverages the high rate and high dynamic range advantages of event data for tracking and mapping. Specifically, EN-SLAM proposes a differentiable CRF (Camera Response Function) rendering technique to generate distinct RGB and event camera data via a shared radiance field, which is optimized by learning a unified implicit representation with the captured event and RGBD supervision. Moreover, based on the temporal difference property of events, we propose a temporal aggregating optimization strategy for the event joint tracking and global bundle adjustment, capitalizing on the consecutive difference constraints of events, significantly enhancing tracking accuracy and robustness. Finally, we construct the simulated dataset $\textbf{DEV-Indoors}$ and real captured dataset $\textbf{DEV-Reals}$ containing 6 scenes, 17 sequences with practical motion blur and lighting changes for evaluations. Experimental results show that our method outperforms the SOTA methods in both tracking ATE and mapping ACC with a real-time $17$ FPS in various challenging environments. The code and dataset will be released soon.
PDF

点此查看论文截图

NePF: Neural Photon Field for Single-Stage Inverse Rendering

Authors:Tuen-Yue Tsui, Qin Zou

We present a novel single-stage framework, Neural Photon Field (NePF), to address the ill-posed inverse rendering from multi-view images. Contrary to previous methods that recover the geometry, material, and illumination in multiple stages and extract the properties from various multi-layer perceptrons across different neural fields, we question such complexities and introduce our method - a single-stage framework that uniformly recovers all properties. NePF achieves this unification by fully utilizing the physical implication behind the weight function of neural implicit surfaces and the view-dependent radiance. Moreover, we introduce an innovative coordinate-based illumination model for rapid volume physically-based rendering. To regularize this illumination, we implement the subsurface scattering model for diffuse estimation. We evaluate our method on both real and synthetic datasets. The results demonstrate the superiority of our approach in recovering high-fidelity geometry and visual-plausible material attributes.
PDF

点此查看论文截图

Entangled View-Epipolar Information Aggregation for Generalizable Neural Radiance Fields

Authors:Zhiyuan Min, Yawei Luo, Wei Yang, Yuesong Wang, Yi Yang

Generalizable NeRF can directly synthesize novel views across new scenes, eliminating the need for scene-specific retraining in vanilla NeRF. A critical enabling factor in these approaches is the extraction of a generalizable 3D representation by aggregating source-view features. In this paper, we propose an Entangled View-Epipolar Information Aggregation method dubbed EVE-NeRF. Different from existing methods that consider cross-view and along-epipolar information independently, EVE-NeRF conducts the view-epipolar feature aggregation in an entangled manner by injecting the scene-invariant appearance continuity and geometry consistency priors to the aggregation process. Our approach effectively mitigates the potential lack of inherent geometric and appearance constraint resulting from one-dimensional interactions, thus further boosting the 3D representation generalizablity. EVE-NeRF attains state-of-the-art performance across various evaluation scenarios. Extensive experiments demonstate that, compared to prevailing single-dimensional aggregation, the entangled network excels in the accuracy of 3D scene geometry and appearance reconstruction.Our project page is https://github.com/tatakai1/EVENeRF.
PDF

点此查看论文截图

GP-NeRF: Generalized Perception NeRF for Context-Aware 3D Scene Understanding

Authors:Hao Li, Dingwen Zhang, Yalun Dai, Nian Liu, Lechao Cheng, Jingfeng Li, Jingdong Wang, Junwei Han

Applying NeRF to downstream perception tasks for scene understanding and representation is becoming increasingly popular. Most existing methods treat semantic prediction as an additional rendering task, \textit{i.e.}, the “label rendering” task, to build semantic NeRFs. However, by rendering semantic/instance labels per pixel without considering the contextual information of the rendered image, these methods usually suffer from unclear boundary segmentation and abnormal segmentation of pixels within an object. To solve this problem, we propose Generalized Perception NeRF (GP-NeRF), a novel pipeline that makes the widely used segmentation model and NeRF work compatibly under a unified framework, for facilitating context-aware 3D scene perception. To accomplish this goal, we introduce transformers to aggregate radiance as well as semantic embedding fields jointly for novel views and facilitate the joint volumetric rendering of both fields. In addition, we propose two self-distillation mechanisms, i.e., the Semantic Distill Loss and the Depth-Guided Semantic Distill Loss, to enhance the discrimination and quality of the semantic field and the maintenance of geometric consistency. In evaluation, we conduct experimental comparisons under two perception tasks (\textit{i.e.} semantic and instance segmentation) using both synthetic and real-world datasets. Notably, our method outperforms SOTA approaches by 6.94\%, 11.76\%, and 8.47\% on generalized semantic segmentation, finetuning semantic segmentation, and instance segmentation, respectively.
PDF

点此查看论文截图

Authors:Xingyu Zhu, Guanhui Ye, Chengdong Dong, Xiapu Luo, Xuetao Wei

The signed distance field (SDF) represents 3D geometries in continuous function space. Due to its continuous nature, explicit 3D models (e.g., meshes) can be extracted from it at arbitrary resolution, which means losing the SDF is equivalent to losing the mesh. Recent research has shown meshes can also be extracted from SDF-enhanced neural radiance fields (NeRF). Such a signal raises an alarm that any implicit neural representation with SDF enhancement can extract the original mesh, which indicates identifying the SDF’s intellectual property becomes an urgent issue. This paper proposes FuncMark, a robust and invisible watermarking method to protect the copyright of signed distance fields by leveraging analytic on-surface deformations to embed binary watermark messages. Such deformation can survive isosurfacing and thus be inherited by the extracted meshes for further watermark message decoding. Our method can recover the message with high-resolution meshes extracted from SDFs and detect the watermark even when mesh vertices are extremely sparse. Furthermore, our method is robust even when various distortions (including remeshing) are encountered. Extensive experiments demonstrate that our \tool significantly outperforms state-of-the-art approaches and the message is still detectable even when only 50 vertex samples are given.
PDF

点此查看论文截图

Hyb-NeRF: A Multiresolution Hybrid Encoding for Neural Radiance Fields

Authors:Yifan Wang, Yi Gong, Yuan Zeng

Recent advances in Neural radiance fields (NeRF) have enabled high-fidelity scene reconstruction for novel view synthesis. However, NeRF requires hundreds of network evaluations per pixel to approximate a volume rendering integral, making it slow to train. Caching NeRFs into explicit data structures can effectively enhance rendering speed but at the cost of higher memory usage. To address these issues, we present Hyb-NeRF, a novel neural radiance field with a multi-resolution hybrid encoding that achieves efficient neural modeling and fast rendering, which also allows for high-quality novel view synthesis. The key idea of Hyb-NeRF is to represent the scene using different encoding strategies from coarse-to-fine resolution levels. Hyb-NeRF exploits memory-efficiency learnable positional features at coarse resolutions and the fast optimization speed and local details of hash-based feature grids at fine resolutions. In addition, to further boost performance, we embed cone tracing-based features in our learnable positional encoding that eliminates encoding ambiguity and reduces aliasing artifacts. Extensive experiments on both synthetic and real-world datasets show that Hyb-NeRF achieves faster rendering speed with better rending quality and even a lower memory footprint in comparison to previous state-of-the-art methods.
PDF WACV2024

点此查看论文截图

PIE-NeRF: Physics-based Interactive Elastodynamics with NeRF

Authors:Yutao Feng, Yintong Shang, Xuan Li, Tianjia Shao, Chenfanfu Jiang, Yin Yang

We show that physics-based simulations can be seamlessly integrated with NeRF to generate high-quality elastodynamics of real-world objects. Unlike existing methods, we discretize nonlinear hyperelasticity in a meshless way, obviating the necessity for intermediate auxiliary shape proxies like a tetrahedral mesh or voxel grid. A quadratic generalized moving least square (Q-GMLS) is employed to capture nonlinear dynamics and large deformation on the implicit model. Such meshless integration enables versatile simulations of complex and codimensional shapes. We adaptively place the least-square kernels according to the NeRF density field to significantly reduce the complexity of the nonlinear simulation. As a result, physically realistic animations can be conveniently synthesized using our method for a wide range of hyperelastic materials at an interactive rate. For more information, please visit our project page at https://fytalon.github.io/pienerf/.
PDF

点此查看论文截图

Depth-Regularized Optimization for 3D Gaussian Splatting in Few-Shot Images

Authors:Jaeyoung Chung, Jeongtaek Oh, Kyoung Mu Lee

In this paper, we present a method to optimize Gaussian splatting with a limited number of images while avoiding overfitting. Representing a 3D scene by combining numerous Gaussian splats has yielded outstanding visual quality. However, it tends to overfit the training views when only a small number of images are available. To address this issue, we introduce a dense depth map as a geometry guide to mitigate overfitting. We obtained the depth map using a pre-trained monocular depth estimation model and aligning the scale and offset using sparse COLMAP feature points. The adjusted depth aids in the color-based optimization of 3D Gaussian splatting, mitigating floating artifacts, and ensuring adherence to geometric constraints. We verify the proposed method on the NeRF-LLFF dataset with varying numbers of few images. Our approach demonstrates robust geometry compared to the original method that relies solely on images.
PDF 10 pages, 5 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录