GAN


2023-11-11 更新

Robust Retraining-free GAN Fingerprinting via Personalized Normalization

Authors:Jianwei Fei, Zhihua Xia, Benedetta Tondi, Mauro Barni

In recent years, there has been significant growth in the commercial applications of generative models, licensed and distributed by model developers to users, who in turn use them to offer services. In this scenario, there is a need to track and identify the responsible user in the presence of a violation of the license agreement or any kind of malicious usage. Although there are methods enabling Generative Adversarial Networks (GANs) to include invisible watermarks in the images they produce, generating a model with a different watermark, referred to as a fingerprint, for each user is time- and resource-consuming due to the need to retrain the model to include the desired fingerprint. In this paper, we propose a retraining-free GAN fingerprinting method that allows model developers to easily generate model copies with the same functionality but different fingerprints. The generator is modified by inserting additional Personalized Normalization (PN) layers whose parameters (scaling and bias) are generated by two dedicated shallow networks (ParamGen Nets) taking the fingerprint as input. A watermark decoder is trained simultaneously to extract the fingerprint from the generated images. The proposed method can embed different fingerprints inside the GAN by just changing the input of the ParamGen Nets and performing a feedforward pass, without finetuning or retraining. The performance of the proposed method in terms of robustness against both model-level and image-level attacks is also superior to the state-of-the-art.
PDF

点此查看论文截图

L-WaveBlock: A Novel Feature Extractor Leveraging Wavelets for Generative Adversarial Networks

Authors:Mirat Shah, Vansh Jain, Anmol Chokshi, Guruprasad Parasnis, Pramod Bide

Generative Adversarial Networks (GANs) have risen to prominence in the field of deep learning, facilitating the generation of realistic data from random noise. The effectiveness of GANs often depends on the quality of feature extraction, a critical aspect of their architecture. This paper introduces L-WaveBlock, a novel and robust feature extractor that leverages the capabilities of the Discrete Wavelet Transform (DWT) with deep learning methodologies. L-WaveBlock is catered to quicken the convergence of GAN generators while simultaneously enhancing their performance. The paper demonstrates the remarkable utility of L-WaveBlock across three datasets, a road satellite imagery dataset, the CelebA dataset and the GoPro dataset, showcasing its ability to ease feature extraction and make it more efficient. By utilizing DWT, L-WaveBlock efficiently captures the intricate details of both structural and textural details, and further partitions feature maps into orthogonal subbands across multiple scales while preserving essential information at the same time. Not only does it lead to faster convergence, but also gives competent results on every dataset by employing the L-WaveBlock. The proposed method achieves an Inception Score of 3.6959 and a Structural Similarity Index of 0.4261 on the maps dataset, a Peak Signal-to-Noise Ratio of 29.05 and a Structural Similarity Index of 0.874 on the CelebA dataset. The proposed method performs competently to the state-of-the-art for the image denoising dataset, albeit not better, but still leads to faster convergence than conventional methods. With this, L-WaveBlock emerges as a robust and efficient tool for enhancing GAN-based image generation, demonstrating superior convergence speed and competitive performance across multiple datasets for image resolution, image generation and image denoising.
PDF 12 figures, 8 pages

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录