无监督/半监督/对比学习


2023-11-05 更新

Top-K Pooling with Patch Contrastive Learning for Weakly-Supervised Semantic Segmentation

Authors:Wangyu Wu, Tianhong Dai, Xiaowei Huang, Fei Ma, Jimin Xiao

Weakly Supervised Semantic Segmentation (WSSS) using only image-level labels has gained significant attention due to cost-effectiveness. Recently, Vision Transformer (ViT) based methods without class activation map (CAM) have shown greater capability in generating reliable pseudo labels than previous methods using CAM. However, the current ViT-based methods utilize max pooling to select the patch with the highest prediction score to map the patch-level classification to the image-level one, which may affect the quality of pseudo labels due to the inaccurate classification of the patches. In this paper, we introduce a novel ViT-based WSSS method named top-K pooling with patch contrastive learning (TKP-PCL), which employs a top-K pooling layer to alleviate the limitations of previous max pooling selection. A patch contrastive error (PCE) is also proposed to enhance the patch embeddings to further improve the final results. The experimental results show that our approach is very efficient and outperforms other state-of-the-art WSSS methods on the PASCAL VOC 2012 dataset.
PDF Submitted to ICASSP 2024

点此查看论文截图

Understanding Contrastive Learning via Distributionally Robust Optimization

Authors:Junkang Wu, Jiawei Chen, Jiancan Wu, Wentao Shi, Xiang Wang, Xiangnan He

This study reveals the inherent tolerance of contrastive learning (CL) towards sampling bias, wherein negative samples may encompass similar semantics (\eg labels). However, existing theories fall short in providing explanations for this phenomenon. We bridge this research gap by analyzing CL through the lens of distributionally robust optimization (DRO), yielding several key insights: (1) CL essentially conducts DRO over the negative sampling distribution, thus enabling robust performance across a variety of potential distributions and demonstrating robustness to sampling bias; (2) The design of the temperature $\tau$ is not merely heuristic but acts as a Lagrange Coefficient, regulating the size of the potential distribution set; (3) A theoretical connection is established between DRO and mutual information, thus presenting fresh evidence for ``InfoNCE as an estimate of MI’’ and a new estimation approach for $\phi$-divergence-based generalized mutual information. We also identify CL’s potential shortcomings, including over-conservatism and sensitivity to outliers, and introduce a novel Adjusted InfoNCE loss (ADNCE) to mitigate these issues. It refines potential distribution, improving performance and accelerating convergence. Extensive experiments on various domains (image, sentence, and graphs) validate the effectiveness of the proposal. The code is available at \url{https://github.com/junkangwu/ADNCE}.
PDF

点此查看论文截图

WeedCLR: Weed Contrastive Learning through Visual Representations with Class-Optimized Loss in Long-Tailed Datasets

Authors:Alzayat Saleh, Alex Olsen, Jake Wood, Bronson Philippa, Mostafa Rahimi Azghadi

Image classification is a crucial task in modern weed management and crop intervention technologies. However, the limited size, diversity, and balance of existing weed datasets hinder the development of deep learning models for generalizable weed identification. In addition, the expensive labelling requirements of mainstream fully-supervised weed classifiers make them cost- and time-prohibitive to deploy widely, for new weed species, and in site-specific weed management. This paper proposes a novel method for Weed Contrastive Learning through visual Representations (WeedCLR), that uses class-optimized loss with Von Neumann Entropy of deep representation for weed classification in long-tailed datasets. WeedCLR leverages self-supervised learning to learn rich and robust visual features without any labels and applies a class-optimized loss function to address the class imbalance problem in long-tailed datasets. WeedCLR is evaluated on two public weed datasets: CottonWeedID15, containing 15 weed species, and DeepWeeds, containing 8 weed species. WeedCLR achieves an average accuracy improvement of 4.3\% on CottonWeedID15 and 5.6\% on DeepWeeds over previous methods. It also demonstrates better generalization ability and robustness to different environmental conditions than existing methods without the need for expensive and time-consuming human annotations. These significant improvements make WeedCLR an effective tool for weed classification in long-tailed datasets and allows for more rapid and widespread deployment of site-specific weed management and crop intervention technologies.
PDF 24 pages, 10 figures, 8 tables. Submitted to the Computers and Electronics in Agriculture journal

点此查看论文截图

SAMCLR: Contrastive pre-training on complex scenes using SAM for view sampling

Authors:Benjamin Missaoui, Chongbin Yuan

In Computer Vision, self-supervised contrastive learning enforces similar representations between different views of the same image. The pre-training is most often performed on image classification datasets, like ImageNet, where images mainly contain a single class of objects. However, when dealing with complex scenes with multiple items, it becomes very unlikely for several views of the same image to represent the same object category. In this setting, we propose SAMCLR, an add-on to SimCLR which uses SAM to segment the image into semantic regions, then sample the two views from the same region. Preliminary results show empirically that when pre-training on Cityscapes and ADE20K, then evaluating on classification on CIFAR-10, STL10 and ImageNette, SAMCLR performs at least on par with, and most often significantly outperforms not only SimCLR, but also DINO and MoCo.
PDF Accepted at NeurIPS 2023 Workshop on SSL

点此查看论文截图

Proposal-Contrastive Pretraining for Object Detection from Fewer Data

Authors:Quentin Bouniot, Romaric Audigier, Angélique Loesch, Amaury Habrard

The use of pretrained deep neural networks represents an attractive way to achieve strong results with few data available. When specialized in dense problems such as object detection, learning local rather than global information in images has proven to be more efficient. However, for unsupervised pretraining, the popular contrastive learning requires a large batch size and, therefore, a lot of resources. To address this problem, we are interested in transformer-based object detectors that have recently gained traction in the community with good performance and with the particularity of generating many diverse object proposals. In this work, we present Proposal Selection Contrast (ProSeCo), a novel unsupervised overall pretraining approach that leverages this property. ProSeCo uses the large number of object proposals generated by the detector for contrastive learning, which allows the use of a smaller batch size, combined with object-level features to learn local information in the images. To improve the effectiveness of the contrastive loss, we introduce the object location information in the selection of positive examples to take into account multiple overlapping object proposals. When reusing pretrained backbone, we advocate for consistency in learning local information between the backbone and the detection head. We show that our method outperforms state of the art in unsupervised pretraining for object detection on standard and novel benchmarks in learning with fewer data.
PDF Published as a conference paper at ICLR 2023

点此查看论文截图

Identifiable Contrastive Learning with Automatic Feature Importance Discovery

Authors:Qi Zhang, Yifei Wang, Yisen Wang

Existing contrastive learning methods rely on pairwise sample contrast $zx^\top z{x’}$ to learn data representations, but the learned features often lack clear interpretability from a human perspective. Theoretically, it lacks feature identifiability and different initialization may lead to totally different features. In this paper, we study a new method named tri-factor contrastive learning (triCL) that involves a 3-factor contrast in the form of $zx^\top S z{x’}$, where $S=\text{diag}(s_1,\dots,s_k)$ is a learnable diagonal matrix that automatically captures the importance of each feature. We show that by this simple extension, triCL can not only obtain identifiable features that eliminate randomness but also obtain more interpretable features that are ordered according to the importance matrix $S$. We show that features with high importance have nice interpretability by capturing common classwise features, and obtain superior performance when evaluated for image retrieval using a few features. The proposed triCL objective is general and can be applied to different contrastive learning methods like SimCLR and CLIP. We believe that it is a better alternative to existing 2-factor contrastive learning by improving its identifiability and interpretability with minimal overhead. Code is available at https://github.com/PKU-ML/Tri-factor-Contrastive-Learning.
PDF

点此查看论文截图

BirdSAT: Cross-View Contrastive Masked Autoencoders for Bird Species Classification and Mapping

Authors:Srikumar Sastry, Subash Khanal, Aayush Dhakal, Di Huang, Nathan Jacobs

We propose a metadata-aware self-supervised learning~(SSL)~framework useful for fine-grained classification and ecological mapping of bird species around the world. Our framework unifies two SSL strategies: Contrastive Learning~(CL) and Masked Image Modeling~(MIM), while also enriching the embedding space with metadata available with ground-level imagery of birds. We separately train uni-modal and cross-modal ViT on a novel cross-view global bird species dataset containing ground-level imagery, metadata (location, time), and corresponding satellite imagery. We demonstrate that our models learn fine-grained and geographically conditioned features of birds, by evaluating on two downstream tasks: fine-grained visual classification~(FGVC) and cross-modal retrieval. Pre-trained models learned using our framework achieve SotA performance on FGVC of iNAT-2021 birds and in transfer learning settings for CUB-200-2011 and NABirds datasets. Moreover, the impressive cross-modal retrieval performance of our model enables the creation of species distribution maps across any geographic region. The dataset and source code will be released at https://github.com/mvrl/BirdSAT}.
PDF Accepted at WACV 2024

点此查看论文截图

CROMA: Remote Sensing Representations with Contrastive Radar-Optical Masked Autoencoders

Authors:Anthony Fuller, Koreen Millard, James R. Green

A vital and rapidly growing application, remote sensing offers vast yet sparsely labeled, spatially aligned multimodal data; this makes self-supervised learning algorithms invaluable. We present CROMA: a framework that combines contrastive and reconstruction self-supervised objectives to learn rich unimodal and multimodal representations. Our method separately encodes masked-out multispectral optical and synthetic aperture radar samples — aligned in space and time — and performs cross-modal contrastive learning. Another encoder fuses these sensors, producing joint multimodal encodings that are used to predict the masked patches via a lightweight decoder. We show that these objectives are complementary when leveraged on spatially aligned multimodal data. We also introduce X- and 2D-ALiBi, which spatially biases our cross- and self-attention matrices. These strategies improve representations and allow our models to effectively extrapolate to images up to 17.6x larger at test-time. CROMA outperforms the current SoTA multispectral model, evaluated on: four classification benchmarks — finetuning (avg. 1.8%), linear (avg. 2.4%) and nonlinear (avg. 1.4%) probing, kNN classification (avg. 3.5%), and K-means clustering (avg. 8.4%); and three segmentation benchmarks (avg. 6.4%). CROMA’s rich, optionally multimodal representations can be widely leveraged across remote sensing applications.
PDF NeurIPS 2023 Camera Ready

点此查看论文截图

Augmentation is AUtO-Net: Augmentation-Driven Contrastive Multiview Learning for Medical Image Segmentation

Authors:Yanming Guo

The utilisation of deep learning segmentation algorithms that learn complex organs and tissue patterns and extract essential regions of interest from the noisy background to improve the visual ability for medical image diagnosis has achieved impressive results in Medical Image Computing (MIC). This thesis focuses on retinal blood vessel segmentation tasks, providing an extensive literature review of deep learning-based medical image segmentation approaches while comparing the methodologies and empirical performances. The work also examines the limitations of current state-of-the-art methods by pointing out the two significant existing limitations: data size constraints and the dependency on high computational resources. To address such problems, this work proposes a novel efficient, simple multiview learning framework that contrastively learns invariant vessel feature representation by comparing with multiple augmented views by various transformations to overcome data shortage and improve generalisation ability. Moreover, the hybrid network architecture integrates the attention mechanism into a Convolutional Neural Network to further capture complex continuous curvilinear vessel structures. The result demonstrates the proposed method validated on the CHASE-DB1 dataset, attaining the highest F1 score of 83.46% and the highest Intersection over Union (IOU) score of 71.62% with UNet structure, surpassing existing benchmark UNet-based methods by 1.95% and 2.8%, respectively. The combination of the metrics indicates the model detects the vessel object accurately with a highly coincidental location with the ground truth. Moreover, the proposed approach could be trained within 30 minutes by consuming less than 3 GB GPU RAM, and such characteristics support the efficient implementation for real-world applications and deployments.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录