强化学习


2023-11-05 更新

Unleashing the Power of Pre-trained Language Models for Offline Reinforcement Learning

Authors:Ruizhe Shi, Yuyao Liu, Yanjie Ze, Simon S. Du, Huazhe Xu

Offline reinforcement learning (RL) aims to find a near-optimal policy using pre-collected datasets. In real-world scenarios, data collection could be costly and risky; therefore, offline RL becomes particularly challenging when the in-domain data is limited. Given recent advances in Large Language Models (LLMs) and their few-shot learning prowess, this paper introduces $\textbf{La}$nguage Models for $\textbf{Mo}$tion Control ($\textbf{LaMo}$), a general framework based on Decision Transformers to effectively use pre-trained Language Models (LMs) for offline RL. Our framework highlights four crucial components: (1) Initializing Decision Transformers with sequentially pre-trained LMs, (2) employing the LoRA fine-tuning method, in contrast to full-weight fine-tuning, to combine the pre-trained knowledge from LMs and in-domain knowledge effectively, (3) using the non-linear MLP transformation instead of linear projections, to generate embeddings, and (4) integrating an auxiliary language prediction loss during fine-tuning to stabilize the LMs and retain their original abilities on languages. Empirical results indicate $\textbf{LaMo}$ achieves state-of-the-art performance in sparse-reward tasks and closes the gap between value-based offline RL methods and decision transformers in dense-reward tasks. In particular, our method demonstrates superior performance in scenarios with limited data samples. Our project website is https://lamo2023.github.io
PDF 19 pages, 9 tables

点此查看论文截图

Autonomous Robotic Reinforcement Learning with Asynchronous Human Feedback

Authors:Max Balsells, Marcel Torne, Zihan Wang, Samedh Desai, Pulkit Agrawal, Abhishek Gupta

Ideally, we would place a robot in a real-world environment and leave it there improving on its own by gathering more experience autonomously. However, algorithms for autonomous robotic learning have been challenging to realize in the real world. While this has often been attributed to the challenge of sample complexity, even sample-efficient techniques are hampered by two major challenges - the difficulty of providing well “shaped” rewards, and the difficulty of continual reset-free training. In this work, we describe a system for real-world reinforcement learning that enables agents to show continual improvement by training directly in the real world without requiring painstaking effort to hand-design reward functions or reset mechanisms. Our system leverages occasional non-expert human-in-the-loop feedback from remote users to learn informative distance functions to guide exploration while leveraging a simple self-supervised learning algorithm for goal-directed policy learning. We show that in the absence of resets, it is particularly important to account for the current “reachability” of the exploration policy when deciding which regions of the space to explore. Based on this insight, we instantiate a practical learning system - GEAR, which enables robots to simply be placed in real-world environments and left to train autonomously without interruption. The system streams robot experience to a web interface only requiring occasional asynchronous feedback from remote, crowdsourced, non-expert humans in the form of binary comparative feedback. We evaluate this system on a suite of robotic tasks in simulation and demonstrate its effectiveness at learning behaviors both in simulation and the real world. Project website https://guided-exploration-autonomous-rl.github.io/GEAR/.
PDF Project website https://guided-exploration-autonomous-rl.github.io/GEAR/

点此查看论文截图

Federated Natural Policy Gradient Methods for Multi-task Reinforcement Learning

Authors:Tong Yang, Shicong Cen, Yuting Wei, Yuxin Chen, Yuejie Chi

Federated reinforcement learning (RL) enables collaborative decision making of multiple distributed agents without sharing local data trajectories. In this work, we consider a multi-task setting, in which each agent has its own private reward function corresponding to different tasks, while sharing the same transition kernel of the environment. Focusing on infinite-horizon tabular Markov decision processes, the goal is to learn a globally optimal policy that maximizes the sum of the discounted total rewards of all the agents in a decentralized manner, where each agent only communicates with its neighbors over some prescribed graph topology. We develop federated vanilla and entropy-regularized natural policy gradient (NPG) methods under softmax parameterization, where gradient tracking is applied to the global Q-function to mitigate the impact of imperfect information sharing. We establish non-asymptotic global convergence guarantees under exact policy evaluation, which are nearly independent of the size of the state-action space and illuminate the impacts of network size and connectivity. To the best of our knowledge, this is the first time that global convergence is established for federated multi-task RL using policy optimization. Moreover, the convergence behavior of the proposed algorithms is robust against inexactness of policy evaluation.
PDF

点此查看论文截图

QFree: A Universal Value Function Factorization for Multi-Agent Reinforcement Learning

Authors:Rizhong Wang, Huiping Li, Di Cui, Demin Xu

Centralized training is widely utilized in the field of multi-agent reinforcement learning (MARL) to assure the stability of training process. Once a joint policy is obtained, it is critical to design a value function factorization method to extract optimal decentralized policies for the agents, which needs to satisfy the individual-global-max (IGM) principle. While imposing additional limitations on the IGM function class can help to meet the requirement, it comes at the cost of restricting its application to more complex multi-agent environments. In this paper, we propose QFree, a universal value function factorization method for MARL. We start by developing mathematical equivalent conditions of the IGM principle based on the advantage function, which ensures that the principle holds without any compromise, removing the conservatism of conventional methods. We then establish a more expressive mixing network architecture that can fulfill the equivalent factorization. In particular, the novel loss function is developed by considering the equivalent conditions as regularization term during policy evaluation in the MARL algorithm. Finally, the effectiveness of the proposed method is verified in a nonmonotonic matrix game scenario. Moreover, we show that QFree achieves the state-of-the-art performance in a general-purpose complex MARL benchmark environment, Starcraft Multi-Agent Challenge (SMAC).
PDF

点此查看论文截图

Enhanced Generalization through Prioritization and Diversity in Self-Imitation Reinforcement Learning over Procedural Environments with Sparse Rewards

Authors:Alain Andres, Daochen Zha, Javier Del Ser

Exploration poses a fundamental challenge in Reinforcement Learning (RL) with sparse rewards, limiting an agent’s ability to learn optimal decision-making due to a lack of informative feedback signals. Self-Imitation Learning (self-IL) has emerged as a promising approach for exploration, leveraging a replay buffer to store and reproduce successful behaviors. However, traditional self-IL methods, which rely on high-return transitions and assume singleton environments, face challenges in generalization, especially in procedurally-generated (PCG) environments. Therefore, new self-IL methods have been proposed to rank which experiences to persist, but they replay transitions uniformly regardless of their significance, and do not address the diversity of the stored demonstrations. In this work, we propose tailored self-IL sampling strategies by prioritizing transitions in different ways and extending prioritization techniques to PCG environments. We also address diversity loss through modifications to counteract the impact of generalization requirements and bias introduced by prioritization techniques. Our experimental analysis, conducted over three PCG sparse reward environments, including MiniGrid and ProcGen, highlights the benefits of our proposed modifications, achieving a new state-of-the-art performance in the MiniGrid-MultiRoom-N12-S10 environment.
PDF 7 pages, 5 figures

点此查看论文截图

Selectively Sharing Experiences Improves Multi-Agent Reinforcement Learning

Authors:Matthias Gerstgrasser, Tom Danino, Sarah Keren

We present a novel multi-agent RL approach, Selective Multi-Agent Prioritized Experience Relay, in which agents share with other agents a limited number of transitions they observe during training. The intuition behind this is that even a small number of relevant experiences from other agents could help each agent learn. Unlike many other multi-agent RL algorithms, this approach allows for largely decentralized training, requiring only a limited communication channel between agents. We show that our approach outperforms baseline no-sharing decentralized training and state-of-the art multi-agent RL algorithms. Further, sharing only a small number of highly relevant experiences outperforms sharing all experiences between agents, and the performance uplift from selective experience sharing is robust across a range of hyperparameters and DQN variants. A reference implementation of our algorithm is available at https://github.com/mgerstgrasser/super.
PDF to be published at NeurIPS 2023

点此查看论文截图

Dynamic Fair Federated Learning Based on Reinforcement Learning

Authors:Weikang Chen, Junping Du, Yingxia Shao, Jia Wang, Yangxi Zhou

Federated learning enables a collaborative training and optimization of global models among a group of devices without sharing local data samples. However, the heterogeneity of data in federated learning can lead to unfair representation of the global model across different devices. To address the fairness issue in federated learning, we propose a dynamic q fairness federated learning algorithm with reinforcement learning, called DQFFL. DQFFL aims to mitigate the discrepancies in device aggregation and enhance the fairness of treatment for all groups involved in federated learning. To quantify fairness, DQFFL leverages the performance of the global federated model on each device and incorporates {\alpha}-fairness to transform the preservation of fairness during federated aggregation into the distribution of client weights in the aggregation process. Considering the sensitivity of parameters in measuring fairness, we propose to utilize reinforcement learning for dynamic parameters during aggregation. Experimental results demonstrate that our DQFFL outperforms the state-of-the-art methods in terms of overall performance, fairness and convergence speed.
PDF

点此查看论文截图

Contrastive Modules with Temporal Attention for Multi-Task Reinforcement Learning

Authors:Siming Lan, Rui Zhang, Qi Yi, Jiaming Guo, Shaohui Peng, Yunkai Gao, Fan Wu, Ruizhi Chen, Zidong Du, Xing Hu, Xishan Zhang, Ling Li, Yunji Chen

In the field of multi-task reinforcement learning, the modular principle, which involves specializing functionalities into different modules and combining them appropriately, has been widely adopted as a promising approach to prevent the negative transfer problem that performance degradation due to conflicts between tasks. However, most of the existing multi-task RL methods only combine shared modules at the task level, ignoring that there may be conflicts within the task. In addition, these methods do not take into account that without constraints, some modules may learn similar functions, resulting in restricting the model’s expressiveness and generalization capability of modular methods. In this paper, we propose the Contrastive Modules with Temporal Attention(CMTA) method to address these limitations. CMTA constrains the modules to be different from each other by contrastive learning and combining shared modules at a finer granularity than the task level with temporal attention, alleviating the negative transfer within the task and improving the generalization ability and the performance for multi-task RL. We conducted the experiment on Meta-World, a multi-task RL benchmark containing various robotics manipulation tasks. Experimental results show that CMTA outperforms learning each task individually for the first time and achieves substantial performance improvements over the baselines.
PDF This paper has been accepted at NeurIPS 2023 as a poster

点此查看论文截图

Diffusion Models for Reinforcement Learning: A Survey

Authors:Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Yong Yu, Weinan Zhang

Diffusion models have emerged as a prominent class of generative models, surpassing previous methods regarding sample quality and training stability. Recent works have shown the advantages of diffusion models in improving reinforcement learning (RL) solutions, including as trajectory planners, expressive policy classes, data synthesizers, etc. This survey aims to provide an overview of the advancements in this emerging field and hopes to inspire new avenues of research. First, we examine several challenges encountered by current RL algorithms. Then, we present a taxonomy of existing methods based on the roles played by diffusion models in RL and explore how the existing challenges are addressed. We further outline successful applications of diffusion models in various RL-related tasks while discussing the limitations of current approaches. Finally, we conclude the survey and offer insights into future research directions, focusing on enhancing model performance and applying diffusion models to broader tasks. We are actively maintaining a GitHub repository for papers and other related resources in applying diffusion models in RL: https://github.com/apexrl/Diff4RLSurvey .
PDF 16 pages, 2 figures, 1 table

点此查看论文截图

Analysis of Information Propagation in Ethereum Network Using Combined Graph Attention Network and Reinforcement Learning to Optimize Network Efficiency and Scalability

Authors:Stefan Kambiz Behfar, Jon Crowcroft

Blockchain technology has revolutionized the way information is propagated in decentralized networks. Ethereum plays a pivotal role in facilitating smart contracts and decentralized applications. Understanding information propagation dynamics in Ethereum is crucial for ensuring network efficiency, security, and scalability. In this study, we propose an innovative approach that utilizes Graph Convolutional Networks (GCNs) to analyze the information propagation patterns in the Ethereum network. The first phase of our research involves data collection from the Ethereum blockchain, consisting of blocks, transactions, and node degrees. We construct a transaction graph representation using adjacency matrices to capture the node embeddings; while our major contribution is to develop a combined Graph Attention Network (GAT) and Reinforcement Learning (RL) model to optimize the network efficiency and scalability. It learns the best actions to take in various network states, ultimately leading to improved network efficiency, throughput, and optimize gas limits for block processing. In the experimental evaluation, we analyze the performance of our model on a large-scale Ethereum dataset. We investigate effectively aggregating information from neighboring nodes capturing graph structure and updating node embeddings using GCN with the objective of transaction pattern prediction, accounting for varying network loads and number of blocks. Not only we design a gas limit optimization model and provide the algorithm, but also to address scalability, we demonstrate the use and implementation of sparse matrices in GraphConv, GraphSAGE, and GAT. The results indicate that our designed GAT-RL model achieves superior results compared to other GCN models in terms of performance. It effectively propagates information across the network, optimizing gas limits for block processing and improving network efficiency.
PDF

点此查看论文截图

DreamSmooth: Improving Model-based Reinforcement Learning via Reward Smoothing

Authors:Vint Lee, Pieter Abbeel, Youngwoon Lee

Model-based reinforcement learning (MBRL) has gained much attention for its ability to learn complex behaviors in a sample-efficient way: planning actions by generating imaginary trajectories with predicted rewards. Despite its success, we found that surprisingly, reward prediction is often a bottleneck of MBRL, especially for sparse rewards that are challenging (or even ambiguous) to predict. Motivated by the intuition that humans can learn from rough reward estimates, we propose a simple yet effective reward smoothing approach, DreamSmooth, which learns to predict a temporally-smoothed reward, instead of the exact reward at the given timestep. We empirically show that DreamSmooth achieves state-of-the-art performance on long-horizon sparse-reward tasks both in sample efficiency and final performance without losing performance on common benchmarks, such as Deepmind Control Suite and Atari benchmarks.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录