Domain Adaptation


2023-11-05 更新

Universal Domain Adaptation for Robust Handling of Distributional Shifts in NLP

Authors:Hyuhng Joon Kim, Hyunsoo Cho, Sang-Woo Lee, Junyeob Kim, Choonghyun Park, Sang-goo Lee, Kang Min Yoo, Taeuk Kim

When deploying machine learning systems to the wild, it is highly desirable for them to effectively leverage prior knowledge to the unfamiliar domain while also firing alarms to anomalous inputs. In order to address these requirements, Universal Domain Adaptation (UniDA) has emerged as a novel research area in computer vision, focusing on achieving both adaptation ability and robustness (i.e., the ability to detect out-of-distribution samples). While UniDA has led significant progress in computer vision, its application on language input still needs to be explored despite its feasibility. In this paper, we propose a comprehensive benchmark for natural language that offers thorough viewpoints of the model’s generalizability and robustness. Our benchmark encompasses multiple datasets with varying difficulty levels and characteristics, including temporal shifts and diverse domains. On top of our testbed, we validate existing UniDA methods from computer vision and state-of-the-art domain adaptation techniques from NLP literature, yielding valuable findings: We observe that UniDA methods originally designed for image input can be effectively transferred to the natural language domain while also underscoring the effect of adaptation difficulty in determining the model’s performance.
PDF Findings of EMNLP 2023

点此查看论文截图

Reference Free Domain Adaptation for Translation of Noisy Questions with Question Specific Rewards

Authors:Baban Gain, Ramakrishna Appicharla, Soumya Chennabasavaraj, Nikesh Garera, Asif Ekbal, Muthusamy Chelliah

Community Question-Answering (CQA) portals serve as a valuable tool for helping users within an organization. However, making them accessible to non-English-speaking users continues to be a challenge. Translating questions can broaden the community’s reach, benefiting individuals with similar inquiries in various languages. Translating questions using Neural Machine Translation (NMT) poses more challenges, especially in noisy environments, where the grammatical correctness of the questions is not monitored. These questions may be phrased as statements by non-native speakers, with incorrect subject-verb order and sometimes even missing question marks. Creating a synthetic parallel corpus from such data is also difficult due to its noisy nature. To address this issue, we propose a training methodology that fine-tunes the NMT system only using source-side data. Our approach balances adequacy and fluency by utilizing a loss function that combines BERTScore and Masked Language Model (MLM) Score. Our method surpasses the conventional Maximum Likelihood Estimation (MLE) based fine-tuning approach, which relies on synthetic target data, by achieving a 1.9 BLEU score improvement. Our model exhibits robustness while we add noise to our baseline, and still achieve 1.1 BLEU improvement and large improvements on TER and BLEURT metrics. Our proposed methodology is model-agnostic and is only necessary during the training phase. We make the codes and datasets publicly available at \url{https://www.iitp.ac.in/~ai-nlp-ml/resources.html#DomainAdapt} for facilitating further research.
PDF Published at: Findings of EMNLP 2023

点此查看论文截图

Adaptive End-to-End Metric Learning for Zero-Shot Cross-Domain Slot Filling

Authors:Yuanjun Shi, Linzhi Wu, Minglai Shao

Recently slot filling has witnessed great development thanks to deep learning and the availability of large-scale annotated data. However, it poses a critical challenge to handle a novel domain whose samples are never seen during training. The recognition performance might be greatly degraded due to severe domain shifts. Most prior works deal with this problem in a two-pass pipeline manner based on metric learning. In practice, these dominant pipeline models may be limited in computational efficiency and generalization capacity because of non-parallel inference and context-free discrete label embeddings. To this end, we re-examine the typical metric-based methods, and propose a new adaptive end-to-end metric learning scheme for the challenging zero-shot slot filling. Considering simplicity, efficiency and generalizability, we present a cascade-style joint learning framework coupled with context-aware soft label representations and slot-level contrastive representation learning to mitigate the data and label shift problems effectively. Extensive experiments on public benchmarks demonstrate the superiority of the proposed approach over a series of competitive baselines.
PDF Accepted to EMNLP 2023 (Main, Long Paper)

点此查看论文截图

Confounder Balancing in Adversarial Domain Adaptation for Pre-Trained Large Models Fine-Tuning

Authors:Shuoran Jiang, Qingcai Chen, Yang Xiang, Youcheng Pan, Xiangping Wu

The excellent generalization, contextual learning, and emergence abilities in the pre-trained large models (PLMs) handle specific tasks without direct training data, making them the better foundation models in the adversarial domain adaptation (ADA) methods to transfer knowledge learned from the source domain to target domains. However, existing ADA methods fail to account for the confounder properly, which is the root cause of the source data distribution that differs from the target domains. This study proposes an adversarial domain adaptation with confounder balancing for PLMs fine-tuning (ADA-CBF). The ADA-CBF includes a PLM as the foundation model for a feature extractor, a domain classifier and a confounder classifier, and they are jointly trained with an adversarial loss. This loss is designed to improve the domain-invariant representation learning by diluting the discrimination in the domain classifier. At the same time, the adversarial loss also balances the confounder distribution among source and unmeasured domains in training. Compared to existing ADA methods, ADA-CBF can correctly identify confounders in domain-invariant features, thereby eliminating the confounder biases in the extracted features from PLMs. The confounder classifier in ADA-CBF is designed as a plug-and-play and can be applied in the confounder measurable, unmeasurable, or partially measurable environments. Empirical results on natural language processing and computer vision downstream tasks show that ADA-CBF outperforms the newest GPT-4, LLaMA2, ViT and ADA methods.
PDF

点此查看论文截图

Deep Feature Registration for Unsupervised Domain Adaptation

Authors:Youshan Zhang, Brian D. Davison

While unsupervised domain adaptation has been explored to leverage the knowledge from a labeled source domain to an unlabeled target domain, existing methods focus on the distribution alignment between two domains. However, how to better align source and target features is not well addressed. In this paper, we propose a deep feature registration (DFR) model to generate registered features that maintain domain invariant features and simultaneously minimize the domain-dissimilarity of registered features and target features via histogram matching. We further employ a pseudo label refinement process, which considers both probabilistic soft selection and center-based hard selection to improve the quality of pseudo labels in the target domain. Extensive experiments on multiple UDA benchmarks demonstrate the effectiveness of our DFR model, resulting in new state-of-the-art performance.
PDF

点此查看论文截图

ShadowSense: Unsupervised Domain Adaptation and Feature Fusion for Shadow-Agnostic Tree Crown Detection from RGB-Thermal Drone Imagery

Authors:Rudraksh Kapil, Seyed Mojtaba Marvasti-Zadeh, Nadir Erbilgin, Nilanjan Ray

Accurate detection of individual tree crowns from remote sensing data poses a significant challenge due to the dense nature of forest canopy and the presence of diverse environmental variations, e.g., overlapping canopies, occlusions, and varying lighting conditions. Additionally, the lack of data for training robust models adds another limitation in effectively studying complex forest conditions. This paper presents a novel method for detecting shadowed tree crowns and provides a challenging dataset comprising roughly 50k paired RGB-thermal images to facilitate future research for illumination-invariant detection. The proposed method (ShadowSense) is entirely self-supervised, leveraging domain adversarial training without source domain annotations for feature extraction and foreground feature alignment for feature pyramid networks to adapt domain-invariant representations by focusing on visible foreground regions, respectively. It then fuses complementary information of both modalities to effectively improve upon the predictions of an RGB-trained detector and boost the overall accuracy. Extensive experiments demonstrate the superiority of the proposed method over both the baseline RGB-trained detector and state-of-the-art techniques that rely on unsupervised domain adaptation or early image fusion. Our code and data are available: https://github.com/rudrakshkapil/ShadowSense
PDF Accepted in IEEE/CVF Winter Applications of Computer Vision (WACV) 2024 main conference! 8 pages (11 with bibliography), 5 figures, 3 tables

点此查看论文截图

Adapt Anything: Tailor Any Image Classifiers across Domains And Categories Using Text-to-Image Diffusion Models

Authors:Weijie Chen, Haoyu Wang, Shicai Yang, Lei Zhang, Wei Wei, Yanning Zhang, Luojun Lin, Di Xie, Yueting Zhuang

We do not pursue a novel method in this paper, but aim to study if a modern text-to-image diffusion model can tailor any task-adaptive image classifier across domains and categories. Existing domain adaptive image classification works exploit both source and target data for domain alignment so as to transfer the knowledge learned from the labeled source data to the unlabeled target data. However, as the development of the text-to-image diffusion model, we wonder if the high-fidelity synthetic data from the text-to-image generator can serve as a surrogate of the source data in real world. In this way, we do not need to collect and annotate the source data for each domain adaptation task in a one-for-one manner. Instead, we utilize only one off-the-shelf text-to-image model to synthesize images with category labels derived from the corresponding text prompts, and then leverage the surrogate data as a bridge to transfer the knowledge embedded in the task-agnostic text-to-image generator to the task-oriented image classifier via domain adaptation. Such a one-for-all adaptation paradigm allows us to adapt anything in the world using only one text-to-image generator as well as the corresponding unlabeled target data. Extensive experiments validate the feasibility of the proposed idea, which even surpasses the state-of-the-art domain adaptation works using the source data collected and annotated in real world.
PDF 11 pages, 6 figures

点此查看论文截图

Robust Source-Free Domain Adaptation for Fundus Image Segmentation

Authors:Lingrui Li, Yanfeng Zhou, Ge Yang

Unsupervised Domain Adaptation (UDA) is a learning technique that transfers knowledge learned in the source domain from labelled training data to the target domain with only unlabelled data. It is of significant importance to medical image segmentation because of the usual lack of labelled training data. Although extensive efforts have been made to optimize UDA techniques to improve the accuracy of segmentation models in the target domain, few studies have addressed the robustness of these models under UDA. In this study, we propose a two-stage training strategy for robust domain adaptation. In the source training stage, we utilize adversarial sample augmentation to enhance the robustness and generalization capability of the source model. And in the target training stage, we propose a novel robust pseudo-label and pseudo-boundary (PLPB) method, which effectively utilizes unlabeled target data to generate pseudo labels and pseudo boundaries that enable model self-adaptation without requiring source data. Extensive experimental results on cross-domain fundus image segmentation confirm the effectiveness and versatility of our method. Source code of this study is openly accessible at https://github.com/LinGrayy/PLPB.
PDF 10 pages, WACV2024

点此查看论文截图

Unsupervised Domain Adaptation for Semantic Segmentation with Pseudo Label Self-Refinement

Authors:Xingchen Zhao, Niluthpol Chowdhury Mithun, Abhinav Rajvanshi, Han-Pang Chiu, Supun Samarasekera

Deep learning-based solutions for semantic segmentation suffer from significant performance degradation when tested on data with different characteristics than what was used during the training. Adapting the models using annotated data from the new domain is not always practical. Unsupervised Domain Adaptation (UDA) approaches are crucial in deploying these models in the actual operating conditions. Recent state-of-the-art (SOTA) UDA methods employ a teacher-student self-training approach, where a teacher model is used to generate pseudo-labels for the new data which in turn guide the training process of the student model. Though this approach has seen a lot of success, it suffers from the issue of noisy pseudo-labels being propagated in the training process. To address this issue, we propose an auxiliary pseudo-label refinement network (PRN) for online refining of the pseudo labels and also localizing the pixels whose predicted labels are likely to be noisy. Being able to improve the quality of pseudo labels and select highly reliable ones, PRN helps self-training of segmentation models to be robust against pseudo label noise propagation during different stages of adaptation. We evaluate our approach on benchmark datasets with three different domain shifts, and our approach consistently performs significantly better than the previous state-of-the-art methods.
PDF WACV 2024

点此查看论文截图

SPA: A Graph Spectral Alignment Perspective for Domain Adaptation

Authors:Zhiqing Xiao, Haobo Wang, Ying Jin, Lei Feng, Gang Chen, Fei Huang, Junbo Zhao

Unsupervised domain adaptation (UDA) is a pivotal form in machine learning to extend the in-domain model to the distinctive target domains where the data distributions differ. Most prior works focus on capturing the inter-domain transferability but largely overlook rich intra-domain structures, which empirically results in even worse discriminability. In this work, we introduce a novel graph SPectral Alignment (SPA) framework to tackle the tradeoff. The core of our method is briefly condensed as follows: (i)-by casting the DA problem to graph primitives, SPA composes a coarse graph alignment mechanism with a novel spectral regularizer towards aligning the domain graphs in eigenspaces; (ii)-we further develop a fine-grained message propagation module — upon a novel neighbor-aware self-training mechanism — in order for enhanced discriminability in the target domain. On standardized benchmarks, the extensive experiments of SPA demonstrate that its performance has surpassed the existing cutting-edge DA methods. Coupled with dense model analysis, we conclude that our approach indeed possesses superior efficacy, robustness, discriminability, and transferability. Code and data are available at: https://github.com/CrownX/SPA.
PDF NeurIPS 2023 camera ready

点此查看论文截图

A Chebyshev Confidence Guided Source-Free Domain Adaptation Framework for Medical Image Segmentation

Authors:Jiesi Hu, Yanwu Yang, Xutao Guo, Jinghua Wang, Ting Ma

Source-free domain adaptation (SFDA) aims to adapt models trained on a labeled source domain to an unlabeled target domain without the access to source data. In medical imaging scenarios, the practical significance of SFDA methods has been emphasized due to privacy concerns. Recent State-of-the-art SFDA methods primarily rely on self-training based on pseudo-labels (PLs). Unfortunately, PLs suffer from accuracy deterioration caused by domain shift, and thus limit the effectiveness of the adaptation process. To address this issue, we propose a Chebyshev confidence guided SFDA framework to accurately assess the reliability of PLs and generate self-improving PLs for self-training. The Chebyshev confidence is estimated by calculating probability lower bound of the PL confidence, given the prediction and the corresponding uncertainty. Leveraging the Chebyshev confidence, we introduce two confidence-guided denoising methods: direct denoising and prototypical denoising. Additionally, we propose a novel teacher-student joint training scheme (TJTS) that incorporates a confidence weighting module to improve PLs iteratively. The TJTS, in collaboration with the denoising methods, effectively prevents the propagation of noise and enhances the accuracy of PLs. Extensive experiments in diverse domain scenarios validate the effectiveness of our proposed framework and establish its superiority over state-of-the-art SFDA methods. Our paper contributes to the field of SFDA by providing a novel approach for precisely estimating the reliability of pseudo-labels and a framework for obtaining high-quality PLs, resulting in improved adaptation performance.
PDF

点此查看论文截图

Improving Online Source-free Domain Adaptation for Object Detection by Unsupervised Data Acquisition

Authors:Xiangyu Shi, Yanyuan Qiao, Qi Wu, Lingqiao Liu, Feras Dayoub

Effective object detection in mobile robots is challenged by deployment in diverse and unfamiliar environments. Online Source-Free Domain Adaptation (O-SFDA) offers real-time model adaptation using a stream of unlabeled data from a target domain. However, not all captured frames in mobile robotics contain information that is beneficial for adaptation, particularly when there is a strong domain shift. This paper introduces a novel approach to enhance O-SFDA for adaptive object detection in mobile robots via unsupervised data acquisition. Our methodology prioritizes the most informative unlabeled samples for inclusion in the online training process. Empirical evaluation on a real-world dataset reveals that our method outperforms existing state-of-the-art O-SFDA techniques, demonstrating the viability of unsupervised data acquisition for improving adaptive object detection in mobile robots.
PDF

点此查看论文截图

From Denoising Training to Test-Time Adaptation: Enhancing Domain Generalization for Medical Image Segmentation

Authors:Ruxue Wen, Hangjie Yuan, Dong Ni, Wenbo Xiao, Yaoyao Wu

In medical image segmentation, domain generalization poses a significant challenge due to domain shifts caused by variations in data acquisition devices and other factors. These shifts are particularly pronounced in the most common scenario, which involves only single-source domain data due to privacy concerns. To address this, we draw inspiration from the self-supervised learning paradigm that effectively discourages overfitting to the source domain. We propose the Denoising Y-Net (DeY-Net), a novel approach incorporating an auxiliary denoising decoder into the basic U-Net architecture. The auxiliary decoder aims to perform denoising training, augmenting the domain-invariant representation that facilitates domain generalization. Furthermore, this paradigm provides the potential to utilize unlabeled data. Building upon denoising training, we propose Denoising Test Time Adaptation (DeTTA) that further: (i) adapts the model to the target domain in a sample-wise manner, and (ii) adapts to the noise-corrupted input. Extensive experiments conducted on widely-adopted liver segmentation benchmarks demonstrate significant domain generalization improvements over our baseline and state-of-the-art results compared to other methods. Code is available at https://github.com/WenRuxue/DeTTA.
PDF

点此查看论文截图

Authors:Mohammed Khaleed Almansoori, Mustansar Fiaz, Hisham Cholakkal

Person search (PS) is a challenging computer vision problem where the objective is to achieve joint optimization for pedestrian detection and re-identification (ReID). Although previous advancements have shown promising performance in the field under fully and weakly supervised learning fashion, there exists a major gap in investigating the domain adaptation ability of PS models. In this paper, we propose a diligent domain adaptive mixer (DDAM) for person search (DDAP-PS) framework that aims to bridge a gap to improve knowledge transfer from the labeled source domain to the unlabeled target domain. Specifically, we introduce a novel DDAM module that generates moderate mixed-domain representations by combining source and target domain representations. The proposed DDAM module encourages domain mixing to minimize the distance between the two extreme domains, thereby enhancing the ReID task. To achieve this, we introduce two bridge losses and a disparity loss. The objective of the two bridge losses is to guide the moderate mixed-domain representations to maintain an appropriate distance from both the source and target domain representations. The disparity loss aims to prevent the moderate mixed-domain representations from being biased towards either the source or target domains, thereby avoiding overfitting. Furthermore, we address the conflict between the two subtasks, localization and ReID, during domain adaptation. To handle this cross-task conflict, we forcefully decouple the norm-aware embedding, which aids in better learning of the moderate mixed-domain representation. We conduct experiments to validate the effectiveness of our proposed method. Our approach demonstrates favorable performance on the challenging PRW and CUHK-SYSU datasets. Our source code is publicly available at \url{https://github.com/mustansarfiaz/DDAM-PS}.
PDF Accepted in WACV-2024. Code is here at \url{https://github.com/mustansarfiaz/DDAM-PS

点此查看论文截图

Mixture-of-Experts for Open Set Domain Adaptation: A Dual-Space Detection Approach

Authors:Zhenbang Du, Jiayu An, Jiahao Hong, Dongrui Wu

Open Set Domain Adaptation (OSDA) aims to cope with the distribution and label shifts between the source and target domains simultaneously, performing accurate classification for known classes while identifying unknown class samples in the target domain. Most existing OSDA approaches, depending on the final image feature space of deep models, require manually-tuned thresholds, and may easily misclassify unknown samples as known classes. Mixture-of-Expert (MoE) could be a remedy. Within an MoE, different experts address different input features, producing unique expert routing patterns for different classes in a routing feature space. As a result, unknown class samples may also display different expert routing patterns to known classes. This paper proposes Dual-Space Detection, which exploits the inconsistencies between the image feature space and the routing feature space to detect unknown class samples without any threshold. Graph Router is further introduced to better make use of the spatial information among image patches. Experiments on three different datasets validated the effectiveness and superiority of our approach. The code will come soon.
PDF

点此查看论文截图

Open-Set Face Recognition with Maximal Entropy and Objectosphere Loss

Authors:Rafael Henrique Vareto, Yu Linghu, Terrance E. Boult, William Robson Schwartz, Manuel Günther

Open-set face recognition characterizes a scenario where unknown individuals, unseen during the training and enrollment stages, appear on operation time. This work concentrates on watchlists, an open-set task that is expected to operate at a low False Positive Identification Rate and generally includes only a few enrollment samples per identity. We introduce a compact adapter network that benefits from additional negative face images when combined with distinct cost functions, such as Objectosphere Loss (OS) and the proposed Maximal Entropy Loss (MEL). MEL modifies the traditional Cross-Entropy loss in favor of increasing the entropy for negative samples and attaches a penalty to known target classes in pursuance of gallery specialization. The proposed approach adopts pre-trained deep neural networks (DNNs) for face recognition as feature extractors. Then, the adapter network takes deep feature representations and acts as a substitute for the output layer of the pre-trained DNN in exchange for an agile domain adaptation. Promising results have been achieved following open-set protocols for three different datasets: LFW, IJB-C, and UCCS as well as state-of-the-art performance when supplementary negative data is properly selected to fine-tune the adapter network.
PDF Accepted for publication in Image and Vision Computing 2023

点此查看论文截图

FlashDecoding++: Faster Large Language Model Inference on GPUs

Authors:Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Hanyu Dong, Yu Wang

As the Large Language Model (LLM) becomes increasingly important in various domains. However, the following challenges still remain unsolved in accelerating LLM inference: (1) Synchronized partial softmax update. The softmax operation requires a synchronized update operation among each partial softmax result, leading to ~20% overheads for the attention computation in LLMs. (2) Under-utilized computation of flat GEMM. The shape of matrices performing GEMM in LLM inference is flat, leading to under-utilized computation and >50% performance loss after padding zeros in previous designs. (3) Performance loss due to static dataflow. Kernel performance in LLM depends on varied input data features, hardware configurations, etc. A single and static dataflow may lead to a 50.25% performance loss for GEMMs of different shapes in LLM inference. We present FlashDecoding++, a fast LLM inference engine supporting mainstream LLMs and hardware back-ends. To tackle the above challenges, FlashDecoding++ creatively proposes: (1) Asynchronized softmax with unified max value. FlashDecoding++ introduces a unified max value technique for different partial softmax computations to avoid synchronization. (2) Flat GEMM optimization with double buffering. FlashDecoding++ points out that flat GEMMs with different shapes face varied bottlenecks. Then, techniques like double buffering are introduced. (3) Heuristic dataflow with hardware resource adaptation. FlashDecoding++ heuristically optimizes dataflow using different hardware resource considering input dynamics. Due to the versatility of optimizations in FlashDecoding++, FlashDecoding++ can achieve up to 4.86x and 2.18x speedup on both NVIDIA and AMD GPUs compared to Hugging Face implementations. FlashDecoding++ also achieves an average speedup of 1.37x compared to state-of-the-art LLM inference engines on mainstream LLMs.
PDF

点此查看论文截图

Align Your Prompts: Test-Time Prompting with Distribution Alignment for Zero-Shot Generalization

Authors:Jameel Hassan, Hanan Gani, Noor Hussein, Muhammad Uzair Khattak, Muzammal Naseer, Fahad Shahbaz Khan, Salman Khan

The promising zero-shot generalization of vision-language models such as CLIP has led to their adoption using prompt learning for numerous downstream tasks. Previous works have shown test-time prompt tuning using entropy minimization to adapt text prompts for unseen domains. While effective, this overlooks the key cause for performance degradation to unseen domains — distribution shift. In this work, we explicitly handle this problem by aligning the out-of-distribution (OOD) test sample statistics to those of the source data using prompt tuning. We use a single test sample to adapt multi-modal prompts at test time by minimizing the feature distribution shift to bridge the gap in the test domain. Evaluating against the domain generalization benchmark, our method improves zero-shot top- 1 accuracy beyond existing prompt-learning techniques, with a 3.08% improvement over the baseline MaPLe. In cross-dataset generalization with unseen categories across 10 datasets, our method improves consistently across all datasets compared to the existing state-of-the-art. Our source code and models are available at https://jameelhassan.github.io/promptalign.
PDF Accepted to NeurIPS 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录