Vision Transformer


2023-10-05 更新

Unified Language-Vision Pretraining in LLM with Dynamic Discrete Visual Tokenization

Authors:Yang Jin, Kun Xu, Kun Xu, Liwei Chen, Chao Liao, Jianchao Tan, Quzhe Huang, Bin Chen, Chenyi Lei, An Liu, Chengru Song, Xiaoqiang Lei, Di Zhang, Wenwu Ou, Kun Gai, Yadong Mu

Recently, the remarkable advance of the Large Language Model (LLM) has inspired researchers to transfer its extraordinary reasoning capability to both vision and language data. However, the prevailing approaches primarily regard the visual input as a prompt and focus exclusively on optimizing the text generation process conditioned upon vision content by a frozen LLM. Such an inequitable treatment of vision and language heavily constrains the model’s potential. In this paper, we break through this limitation by representing both vision and language in a unified form. Specifically, we introduce a well-designed visual tokenizer to translate the non-linguistic image into a sequence of discrete tokens like a foreign language that LLM can read. The resulting visual tokens encompass high-level semantics worthy of a word and also support dynamic sequence length varying from the image. Coped with this tokenizer, the presented foundation model called LaVIT can handle both image and text indiscriminately under the same generative learning paradigm. This unification empowers LaVIT to serve as an impressive generalist interface to understand and generate multi-modal content simultaneously. Extensive experiments further showcase that it outperforms the existing models by a large margin on massive vision-language tasks. Our code and models will be available at https://github.com/jy0205/LaVIT.
PDF

点此查看论文截图

MMICL: Empowering Vision-language Model with Multi-Modal In-Context Learning

Authors:Haozhe Zhao, Zefan Cai, Shuzheng Si, Xiaojian Ma, Kaikai An, Liang Chen, Zixuan Liu, Sheng Wang, Wenjuan Han, Baobao Chang

Since the resurgence of deep learning, vision-language models (VLMs) enhanced by large language models (LLMs) have grown exponentially in popularity. However, while LLMs can utilize extensive background knowledge and task information with in-context learning, most VLMs still struggle with understanding complex multi-modal prompts with multiple images, making VLMs less effective in downstream vision-language tasks. In this paper, we address the limitation above by 1) introducing MMICL, a new approach to allow the VLM to deal with multi-modal inputs efficiently; 2) proposing a novel context scheme to augment the in-context learning ability of the VLM; 3) constructing the Multi-modal In-Context Learning (MIC) dataset, designed to enhance the VLM’s ability to understand complex multi-modal prompts. Our experiments confirm that MMICL achieves new state-of-the-art zero-shot performance on a wide range of general vision-language tasks, especially for complex benchmarks, including MME and MMBench. Our analysis demonstrates that MMICL effectively tackles the challenge of complex multi-modal prompt understanding and emerges the impressive ICL ability. Furthermore, we observe that MMICL successfully alleviates language bias in VLMs, a common issue for VLMs that often leads to hallucination when faced with extensive textual context.
PDF Code, dataset, checkpoints, and demos are available at https://github.com/PKUnlp-icler/MIC

点此查看论文截图

Improving Facade Parsing with Vision Transformers and Line Integration

Authors:Bowen Wang, Jiaxing Zhang, Ran Zhang, Yunqin Li, Liangzhi Li, Yuta Nakashima

Facade parsing stands as a pivotal computer vision task with far-reaching applications in areas like architecture, urban planning, and energy efficiency. Despite the recent success of deep learning-based methods in yielding impressive results on certain open-source datasets, their viability for real-world applications remains uncertain. Real-world scenarios are considerably more intricate, demanding greater computational efficiency. Existing datasets often fall short in representing these settings, and previous methods frequently rely on extra models to enhance accuracy, which requires much computation cost. In this paper, we introduce Comprehensive Facade Parsing (CFP), a dataset meticulously designed to encompass the intricacies of real-world facade parsing tasks. Comprising a total of 602 high-resolution street-view images, this dataset captures a diverse array of challenging scenarios, including sloping angles and densely clustered buildings, with painstakingly curated annotations for each image. We introduce a new pipeline known as Revision-based Transformer Facade Parsing (RTFP). This marks the pioneering utilization of Vision Transformers (ViT) in facade parsing, and our experimental results definitively substantiate its merit. We also design Line Acquisition, Filtering, and Revision (LAFR), an efficient yet accurate revision algorithm that can improve the segment result solely from simple line detection using prior knowledge of the facade. In ECP 2011, RueMonge 2014, and our CFP, we evaluate the superiority of our method. The dataset and code are available at https://github.com/wbw520/RTFP.
PDF 13 pages, 7 figures, 9 tables

点此查看论文截图

Masked autoencoders are scalable learners of cellular morphology

Authors:Oren Kraus, Kian Kenyon-Dean, Saber Saberian, Maryam Fallah, Peter McLean, Jess Leung, Vasudev Sharma, Ayla Khan, Jia Balakrishnan, Safiye Celik, Maciej Sypetkowski, Chi Vicky Cheng, Kristen Morse, Maureen Makes, Ben Mabey, Berton Earnshaw

Inferring biological relationships from cellular phenotypes in high-content microscopy screens provides significant opportunity and challenge in biological research. Prior results have shown that deep vision models can capture biological signal better than hand-crafted features. This work explores how weakly supervised and self-supervised deep learning approaches scale when training larger models on larger datasets. Our results show that both CNN- and ViT-based masked autoencoders significantly outperform weakly supervised models. At the high-end of our scale, a ViT-L/8 trained on over 3.5-billion unique crops sampled from 95-million microscopy images achieves relative improvements as high as 28% over our best weakly supervised models at inferring known biological relationships curated from public databases.
PDF 4 pages, 4 figures

点此查看论文截图

Channel Vision Transformers: An Image Is Worth C x 16 x 16 Words

Authors:Yujia Bao, Srinivasan Sivanandan, Theofanis Karaletsos

Vision Transformer (ViT) has emerged as a powerful architecture in the realm of modern computer vision. However, its application in certain imaging fields, such as microscopy and satellite imaging, presents unique challenges. In these domains, images often contain multiple channels, each carrying semantically distinct and independent information. Furthermore, the model must demonstrate robustness to sparsity in input channels, as they may not be densely available during training or testing. In this paper, we propose a modification to the ViT architecture that enhances reasoning across the input channels and introduce Hierarchical Channel Sampling (HCS) as an additional regularization technique to ensure robustness when only partial channels are presented during test time. Our proposed model, ChannelViT, constructs patch tokens independently from each input channel and utilizes a learnable channel embedding that is added to the patch tokens, similar to positional embeddings. We evaluate the performance of ChannelViT on ImageNet, JUMP-CP (microscopy cell imaging), and So2Sat (satellite imaging). Our results show that ChannelViT outperforms ViT on classification tasks and generalizes well, even when a subset of input channels is used during testing. Across our experiments, HCS proves to be a powerful regularizer, independent of the architecture employed, suggesting itself as a straightforward technique for robust ViT training. Lastly, we find that ChannelViT generalizes effectively even when there is limited access to all channels during training, highlighting its potential for multi-channel imaging under real-world conditions with sparse sensors.
PDF

点此查看论文截图

Vision Transformers Need Registers

Authors:Timothée Darcet, Maxime Oquab, Julien Mairal, Piotr Bojanowski

Transformers have recently emerged as a powerful tool for learning visual representations. In this paper, we identify and characterize artifacts in feature maps of both supervised and self-supervised ViT networks. The artifacts correspond to high-norm tokens appearing during inference primarily in low-informative background areas of images, that are repurposed for internal computations. We propose a simple yet effective solution based on providing additional tokens to the input sequence of the Vision Transformer to fill that role. We show that this solution fixes that problem entirely for both supervised and self-supervised models, sets a new state of the art for self-supervised visual models on dense visual prediction tasks, enables object discovery methods with larger models, and most importantly leads to smoother feature maps and attention maps for downstream visual processing.
PDF

点此查看论文截图

End-to-End (Instance)-Image Goal Navigation through Correspondence as an Emergent Phenomenon

Authors:Guillaume Bono, Leonid Antsfeld, Boris Chidlovskii, Philippe Weinzaepfel, Christian Wolf

Most recent work in goal oriented visual navigation resorts to large-scale machine learning in simulated environments. The main challenge lies in learning compact representations generalizable to unseen environments and in learning high-capacity perception modules capable of reasoning on high-dimensional input. The latter is particularly difficult when the goal is not given as a category (“ObjectNav”) but as an exemplar image (“ImageNav”), as the perception module needs to learn a comparison strategy requiring to solve an underlying visual correspondence problem. This has been shown to be difficult from reward alone or with standard auxiliary tasks. We address this problem through a sequence of two pretext tasks, which serve as a prior for what we argue is one of the main bottleneck in perception, extremely wide-baseline relative pose estimation and visibility prediction in complex scenes. The first pretext task, cross-view completion is a proxy for the underlying visual correspondence problem, while the second task addresses goal detection and finding directly. We propose a new dual encoder with a large-capacity binocular ViT model and show that correspondence solutions naturally emerge from the training signals. Experiments show significant improvements and SOTA performance on the two benchmarks, ImageNav and the Instance-ImageNav variant, where camera intrinsics and height differ between observation and goal.
PDF

点此查看论文截图

FLIP: Cross-domain Face Anti-spoofing with Language Guidance

Authors:Koushik Srivatsan, Muzammal Naseer, Karthik Nandakumar

Face anti-spoofing (FAS) or presentation attack detection is an essential component of face recognition systems deployed in security-critical applications. Existing FAS methods have poor generalizability to unseen spoof types, camera sensors, and environmental conditions. Recently, vision transformer (ViT) models have been shown to be effective for the FAS task due to their ability to capture long-range dependencies among image patches. However, adaptive modules or auxiliary loss functions are often required to adapt pre-trained ViT weights learned on large-scale datasets such as ImageNet. In this work, we first show that initializing ViTs with multimodal (e.g., CLIP) pre-trained weights improves generalizability for the FAS task, which is in line with the zero-shot transfer capabilities of vision-language pre-trained (VLP) models. We then propose a novel approach for robust cross-domain FAS by grounding visual representations with the help of natural language. Specifically, we show that aligning the image representation with an ensemble of class descriptions (based on natural language semantics) improves FAS generalizability in low-data regimes. Finally, we propose a multimodal contrastive learning strategy to boost feature generalization further and bridge the gap between source and target domains. Extensive experiments on three standard protocols demonstrate that our method significantly outperforms the state-of-the-art methods, achieving better zero-shot transfer performance than five-shot transfer of adaptive ViTs. Code: https://github.com/koushiksrivats/FLIP
PDF Accepted to ICCV-2023. Project Page: https://koushiksrivats.github.io/FLIP/

点此查看论文截图

ELIP: Efficient Language-Image Pre-training with Fewer Vision Tokens

Authors:Yangyang Guo, Haoyu Zhang, Liqiang Nie, Yongkang Wong, Mohan Kankanhalli

Learning a versatile language-image model is computationally prohibitive under a limited computing budget. This paper delves into the efficient language-image pre-training, an area that has received relatively little attention despite its importance in reducing computational cost and footprint. To that end, we propose a vision token pruning and merging method, ie ELIP, to remove less influential tokens based on the supervision of language outputs. Our method is designed with several strengths, such as being computation-efficient, memory-efficient, and trainable-parameter-free, and is distinguished from previous vision-only token pruning approaches by its alignment with task objectives. We implement this method in a progressively pruning manner using several sequential blocks. To evaluate its generalization performance, we apply ELIP to three commonly used language-image pre-training models and utilize public image-caption pairs with 4M images for pre-training. Our experiments demonstrate that with the removal of ~30$\%$ vision tokens across 12 ViT layers, ELIP maintains significantly comparable performance with baselines ($\sim$0.32 accuracy drop on average) over various downstream tasks including cross-modal retrieval, VQA, image captioning, etc. In addition, the spared GPU resources by our ELIP allow us to scale up with larger batch sizes, thereby accelerating model pre-training and even sometimes enhancing downstream model performance. Our code will be released at https://github.com/guoyang9/ELIP.
PDF

点此查看论文截图

Segment Anything Model is a Good Teacher for Local Feature Learning

Authors:Jingqian Wu, Rongtao Xu, Zach Wood-Doughty, Changwei Wang

Local feature detection and description play an important role in many computer vision tasks, which are designed to detect and describe keypoints in “any scene” and “any downstream task”. Data-driven local feature learning methods need to rely on pixel-level correspondence for training, which is challenging to acquire at scale, thus hindering further improvements in performance. In this paper, we propose SAMFeat to introduce SAM (segment anything model), a fundamental model trained on 11 million images, as a teacher to guide local feature learning and thus inspire higher performance on limited datasets. To do so, first, we construct an auxiliary task of Pixel Semantic Relational Distillation (PSRD), which distillates feature relations with category-agnostic semantic information learned by the SAM encoder into a local feature learning network, to improve local feature description using semantic discrimination. Second, we develop a technique called Weakly Supervised Contrastive Learning Based on Semantic Grouping (WSC), which utilizes semantic groupings derived from SAM as weakly supervised signals, to optimize the metric space of local descriptors. Third, we design an Edge Attention Guidance (EAG) to further improve the accuracy of local feature detection and description by prompting the network to pay more attention to the edge region guided by SAM. SAMFeat’s performance on various tasks such as image matching on HPatches, and long-term visual localization on Aachen Day-Night showcases its superiority over previous local features. The release code is available at https://github.com/vignywang/SAMFeat.
PDF

点此查看论文截图

Domain-Adaptive Learning: Unsupervised Adaptation for Histology Images with Improved Loss Function Combination

Authors:Ravi Kant Gupta, Shounak Das, Amit Sethi

This paper presents a novel approach for unsupervised domain adaptation (UDA) targeting H&E stained histology images. Existing adversarial domain adaptation methods may not effectively align different domains of multimodal distributions associated with classification problems. The objective is to enhance domain alignment and reduce domain shifts between these domains by leveraging their unique characteristics. Our approach proposes a novel loss function along with carefully selected existing loss functions tailored to address the challenges specific to histology images. This loss combination not only makes the model accurate and robust but also faster in terms of training convergence. We specifically focus on leveraging histology-specific features, such as tissue structure and cell morphology, to enhance adaptation performance in the histology domain. The proposed method is extensively evaluated in accuracy, robustness, and generalization, surpassing state-of-the-art techniques for histology images. We conducted extensive experiments on the FHIST dataset and the results show that our proposed method - Domain Adaptive Learning (DAL) significantly surpasses the ViT-based and CNN-based SoTA methods by 1.41% and 6.56% respectively.
PDF

点此查看论文截图

Information Flow in Self-Supervised Learning

Authors:Zhiquan Tan, Jingqin Yang, Weiran Huang, Yang Yuan, Yifan Zhang

In this paper, we provide a comprehensive toolbox for understanding and enhancing self-supervised learning (SSL) methods through the lens of matrix information theory. Specifically, by leveraging the principles of matrix mutual information and joint entropy, we offer a unified analysis for both contrastive and feature decorrelation based methods. Furthermore, we propose the matrix variational masked auto-encoder (M-MAE) method, grounded in matrix information theory, as an enhancement to masked image modeling. The empirical evaluations underscore the effectiveness of M-MAE compared with the state-of-the-art methods, including a 3.9% improvement in linear probing ViT-Base, and a 1% improvement in fine-tuning ViT-Large, both on ImageNet.
PDF

点此查看论文截图

Text-image Alignment for Diffusion-based Perception

Authors:Neehar Kondapaneni, Markus Marks, Manuel Knott, Rogério Guimarães, Pietro Perona

Diffusion models are generative models with impressive text-to-image synthesis capabilities and have spurred a new wave of creative methods for classical machine learning tasks. However, the best way to harness the perceptual knowledge of these generative models for visual tasks is still an open question. Specifically, it is unclear how to use the prompting interface when applying diffusion backbones to vision tasks. We find that automatically generated captions can improve text-image alignment and significantly enhance a model’s cross-attention maps, leading to better perceptual performance. Our approach improves upon the current SOTA in diffusion-based semantic segmentation on ADE20K and the current overall SOTA in depth estimation on NYUv2. Furthermore, our method generalizes to the cross-domain setting; we use model personalization and caption modifications to align our model to the target domain and find improvements over unaligned baselines. Our object detection model, trained on Pascal VOC, achieves SOTA results on Watercolor2K. Our segmentation method, trained on Cityscapes, achieves SOTA results on Dark Zurich-val and Nighttime Driving.
PDF

点此查看论文截图

DeformUX-Net: Exploring a 3D Foundation Backbone for Medical Image Segmentation with Depthwise Deformable Convolution

Authors:Ho Hin Lee, Quan Liu, Qi Yang, Xin Yu, Shunxing Bao, Yuankai Huo, Bennett A. Landman

The application of 3D ViTs to medical image segmentation has seen remarkable strides, somewhat overshadowing the budding advancements in Convolutional Neural Network (CNN)-based models. Large kernel depthwise convolution has emerged as a promising technique, showcasing capabilities akin to hierarchical transformers and facilitating an expansive effective receptive field (ERF) vital for dense predictions. Despite this, existing core operators, ranging from global-local attention to large kernel convolution, exhibit inherent trade-offs and limitations (e.g., global-local range trade-off, aggregating attentional features). We hypothesize that deformable convolution can be an exploratory alternative to combine all advantages from the previous operators, providing long-range dependency, adaptive spatial aggregation and computational efficiency as a foundation backbone. In this work, we introduce 3D DeformUX-Net, a pioneering volumetric CNN model that adeptly navigates the shortcomings traditionally associated with ViTs and large kernel convolution. Specifically, we revisit volumetric deformable convolution in depth-wise setting to adapt long-range dependency with computational efficiency. Inspired by the concepts of structural re-parameterization for convolution kernel weights, we further generate the deformable tri-planar offsets by adapting a parallel branch (starting from $1\times1\times1$ convolution), providing adaptive spatial aggregation across all channels. Our empirical evaluations reveal that the 3D DeformUX-Net consistently outperforms existing state-of-the-art ViTs and large kernel convolution models across four challenging public datasets, spanning various scales from organs (KiTS: 0.680 to 0.720, MSD Pancreas: 0.676 to 0.717, AMOS: 0.871 to 0.902) to vessels (e.g., MSD hepatic vessels: 0.635 to 0.671) in mean Dice.
PDF 14 pages, the source code with our pre-trained model is available at this https://github.com/MASILab/deform-uxnet

点此查看论文截图

Dual-Augmented Transformer Network for Weakly Supervised Semantic Segmentation

Authors:Jingliang Deng, Zonghan Li

Weakly supervised semantic segmentation (WSSS), a fundamental computer vision task, which aims to segment out the object within only class-level labels. The traditional methods adopt the CNN-based network and utilize the class activation map (CAM) strategy to discover the object regions. However, such methods only focus on the most discriminative region of the object, resulting in incomplete segmentation. An alternative is to explore vision transformers (ViT) to encode the image to acquire the global semantic information. Yet, the lack of transductive bias to objects is a flaw of ViT. In this paper, we explore the dual-augmented transformer network with self-regularization constraints for WSSS. Specifically, we propose a dual network with both CNN-based and transformer networks for mutually complementary learning, where both networks augment the final output for enhancement. Massive systemic evaluations on the challenging PASCAL VOC 2012 benchmark demonstrate the effectiveness of our method, outperforming previous state-of-the-art methods.
PDF

点此查看论文截图

Controlling Vision-Language Models for Universal Image Restoration

Authors:Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön

Vision-language models such as CLIP have shown great impact on diverse downstream tasks for zero-shot or label-free predictions. However, when it comes to low-level vision such as image restoration their performance deteriorates dramatically due to corrupted inputs. In this paper, we present a degradation-aware vision-language model (DA-CLIP) to better transfer pretrained vision-language models to low-level vision tasks as a universal framework for image restoration. More specifically, DA-CLIP trains an additional controller that adapts the fixed CLIP image encoder to predict high-quality feature embeddings. By integrating the embedding into an image restoration network via cross-attention, we are able to pilot the model to learn a high-fidelity image reconstruction. The controller itself will also output a degradation feature that matches the real corruptions of the input, yielding a natural classifier for different degradation types. In addition, we construct a mixed degradation dataset with synthetic captions for DA-CLIP training. Our approach advances state-of-the-art performance on both degradation-specific and unified image restoration tasks, showing a promising direction of prompting image restoration with large-scale pretrained vision-language models. Our code is available at https://github.com/Algolzw/daclip-uir.
PDF Project page: https://algolzw.github.io/daclip-uir/index.html

点此查看论文截图

CLIPSelf: Vision Transformer Distills Itself for Open-Vocabulary Dense Prediction

Authors:Size Wu, Wenwei Zhang, Lumin Xu, Sheng Jin, Xiangtai Li, Wentao Liu, Chen Change Loy

Open-vocabulary dense prediction tasks including object detection and image segmentation have been advanced by the success of Contrastive Language-Image Pre-training (CLIP). CLIP models, particularly those incorporating vision transformers (ViTs), have exhibited remarkable generalization ability in zero-shot image classification. However, when transferring the vision-language alignment of CLIP from global image representation to local region representation for the open-vocabulary dense prediction tasks, CLIP ViTs suffer from the domain shift from full images to local image regions. In this paper, we embark on an in-depth analysis of the region-language alignment in CLIP models, which is essential for downstream open-vocabulary dense prediction tasks. Subsequently, we propose an approach named CLIPSelf, which adapts the image-level recognition ability of CLIP ViT to local image regions without needing any region-text pairs. CLIPSelf empowers ViTs to distill itself by aligning a region representation extracted from its dense feature map with the image-level representation of the corresponding image crop. With the enhanced CLIP ViTs, we achieve new state-of-the-art performance on open-vocabulary object detection, semantic segmentation, and panoptic segmentation across various benchmarks. Models and code will be available at https://github.com/wusize/CLIPSelf.
PDF

点此查看论文截图

SYRAC: Synthesize, Rank, and Count

Authors:Adriano D’Alessandro, Ali Mahdavi-Amiri, Ghassan Hamarneh

Crowd counting is a critical task in computer vision, with several important applications. However, existing counting methods rely on labor-intensive density map annotations, necessitating the manual localization of each individual pedestrian. While recent efforts have attempted to alleviate the annotation burden through weakly or semi-supervised learning, these approaches fall short of significantly reducing the workload. We propose a novel approach to eliminate the annotation burden by leveraging latent diffusion models to generate synthetic data. However, these models struggle to reliably understand object quantities, leading to noisy annotations when prompted to produce images with a specific quantity of objects. To address this, we use latent diffusion models to create two types of synthetic data: one by removing pedestrians from real images, which generates ranked image pairs with a weak but reliable object quantity signal, and the other by generating synthetic images with a predetermined number of objects, offering a strong but noisy counting signal. Our method utilizes the ranking image pairs for pre-training and then fits a linear layer to the noisy synthetic images using these crowd quantity features. We report state-of-the-art results for unsupervised crowd counting.
PDF

点此查看论文截图

ViT-ReciproCAM: Gradient and Attention-Free Visual Explanations for Vision Transformer

Authors:Seok-Yong Byun, Wonju Lee

This paper presents a novel approach to address the challenges of understanding the prediction process and debugging prediction errors in Vision Transformers (ViT), which have demonstrated superior performance in various computer vision tasks such as image classification and object detection. While several visual explainability techniques, such as CAM, Grad-CAM, Score-CAM, and Recipro-CAM, have been extensively researched for Convolutional Neural Networks (CNNs), limited research has been conducted on ViT. Current state-of-the-art solutions for ViT rely on class agnostic Attention-Rollout and Relevance techniques. In this work, we propose a new gradient-free visual explanation method for ViT, called ViT-ReciproCAM, which does not require attention matrix and gradient information. ViT-ReciproCAM utilizes token masking and generated new layer outputs from the target layer’s input to exploit the correlation between activated tokens and network predictions for target classes. Our proposed method outperforms the state-of-the-art Relevance method in the Average Drop-Coherence-Complexity (ADCC) metric by $4.58\%$ to $5.80\%$ and generates more localized saliency maps. Our experiments demonstrate the effectiveness of ViT-ReciproCAM and showcase its potential for understanding and debugging ViT models. Our proposed method provides an efficient and easy-to-implement alternative for generating visual explanations, without requiring attention and gradient information, which can be beneficial for various applications in the field of computer vision.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录