2023-09-12 更新
Self-Sampling Meta SAM: Enhancing Few-shot Medical Image Segmentation with Meta-Learning
Authors:Yiming Zhang, Tianang Leng, Kun Han, Xiaohui Xie
While the Segment Anything Model (SAM) excels in semantic segmentation for general-purpose images, its performance significantly deteriorates when applied to medical images, primarily attributable to insufficient representation of medical images in its training dataset. Nonetheless, gathering comprehensive datasets and training models that are universally applicable is particularly challenging due to the long-tail problem common in medical images. To address this gap, here we present a Self-Sampling Meta SAM (SSM-SAM) framework for few-shot medical image segmentation. Our innovation lies in the design of three key modules: 1) An online fast gradient descent optimizer, further optimized by a meta-learner, which ensures swift and robust adaptation to new tasks. 2) A Self-Sampling module designed to provide well-aligned visual prompts for improved attention allocation; and 3) A robust attention-based decoder specifically designed for medical few-shot learning to capture relationship between different slices. Extensive experiments on a popular abdominal CT dataset and an MRI dataset demonstrate that the proposed method achieves significant improvements over state-of-the-art methods in few-shot segmentation, with an average improvements of 10.21% and 1.80% in terms of DSC, respectively. In conclusion, we present a novel approach for rapid online adaptation in interactive image segmentation, adapting to a new organ in just 0.83 minutes. Code is publicly available on GitHub upon acceptance.
PDF
点此查看论文截图
Few-shot Diagnosis of Chest x-rays Using an Ensemble of Random Discriminative Subspaces
Authors: Kshitiz, Garvit Garg, Angshuman Paul
Due to the scarcity of annotated data in the medical domain, few-shot learning may be useful for medical image analysis tasks. We design a few-shot learning method using an ensemble of random subspaces for the diagnosis of chest x-rays (CXRs). Our design is computationally efficient and almost 1.8 times faster than method that uses the popular truncated singular value decomposition (t-SVD) for subspace decomposition. The proposed method is trained by minimizing a novel loss function that helps create well-separated clusters of training data in discriminative subspaces. As a result, minimizing the loss maximizes the distance between the subspaces, making them discriminative and assisting in better classification. Experiments on large-scale publicly available CXR datasets yield promising results. Code for the project will be available at https://github.com/Few-shot-Learning-on-chest-x-ray/fsl_subspace.
PDF ICLR MLGH Workshop 2023
点此查看论文截图
Few shot font generation via transferring similarity guided global style and quantization local style
Authors:Wei Pan, Anna Zhu, Xinyu Zhou, Brian Kenji Iwana, Shilin Li
Automatic few-shot font generation (AFFG), aiming at generating new fonts with only a few glyph references, reduces the labor cost of manually designing fonts. However, the traditional AFFG paradigm of style-content disentanglement cannot capture the diverse local details of different fonts. So, many component-based approaches are proposed to tackle this problem. The issue with component-based approaches is that they usually require special pre-defined glyph components, e.g., strokes and radicals, which is infeasible for AFFG of different languages. In this paper, we present a novel font generation approach by aggregating styles from character similarity-guided global features and stylized component-level representations. We calculate the similarity scores of the target character and the referenced samples by measuring the distance along the corresponding channels from the content features, and assigning them as the weights for aggregating the global style features. To better capture the local styles, a cross-attention-based style transfer module is adopted to transfer the styles of reference glyphs to the components, where the components are self-learned discrete latent codes through vector quantization without manual definition. With these designs, our AFFG method could obtain a complete set of component-level style representations, and also control the global glyph characteristics. The experimental results reflect the effectiveness and generalization of the proposed method on different linguistic scripts, and also show its superiority when compared with other state-of-the-art methods. The source code can be found at https://github.com/awei669/VQ-Font.
PDF Accepted by ICCV 2023
点此查看论文截图
Big-model Driven Few-shot Continual Learning
Authors:Ziqi Gu, Chunyan Xu, Zihan Lu, Xin Liu, Anbo Dai, Zhen Cui
Few-shot continual learning (FSCL) has attracted intensive attention and achieved some advances in recent years, but now it is difficult to again make a big stride in accuracy due to the limitation of only few-shot incremental samples. Inspired by distinctive human cognition ability in life learning, in this work, we propose a novel Big-model driven Few-shot Continual Learning (B-FSCL) framework to gradually evolve the model under the traction of the world’s big-models (like human accumulative knowledge). Specifically, we perform the big-model driven transfer learning to leverage the powerful encoding capability of these existing big-models, which can adapt the continual model to a few of newly added samples while avoiding the over-fitting problem. Considering that the big-model and the continual model may have different perceived results for the identical images, we introduce an instance-level adaptive decision mechanism to provide the high-level flexibility cognitive support adjusted to varying samples. In turn, the adaptive decision can be further adopted to optimize the parameters of the continual model, performing the adaptive distillation of big-model’s knowledge information. Experimental results of our proposed B-FSCL on three popular datasets (including CIFAR100, minilmageNet and CUB200) completely surpass all state-of-the-art FSCL methods.
PDF 9 pages 6 figures
点此查看论文截图
Federated Few-shot Learning for Cough Classification with Edge Devices
Authors:Ngan Dao Hoang, Dat Tran-Anh, Manh Luong, Cong Tran, Cuong Pham
Automatically classifying cough sounds is one of the most critical tasks for the diagnosis and treatment of respiratory diseases. However, collecting a huge amount of labeled cough dataset is challenging mainly due to high laborious expenses, data scarcity, and privacy concerns. In this work, our aim is to develop a framework that can effectively perform cough classification even in situations when enormous cough data is not available, while also addressing privacy concerns. Specifically, we formulate a new problem to tackle these challenges and adopt few-shot learning and federated learning to design a novel framework, termed F2LCough, for solving the newly formulated problem. We illustrate the superiority of our method compared with other approaches on COVID-19 Thermal Face & Cough dataset, in which F2LCough achieves an average F1-Score of 86%. Our results show the feasibility of few-shot learning combined with federated learning to build a classification model of cough sounds. This new methodology is able to classify cough sounds in data-scarce situations and maintain privacy properties. The outcomes of this work can be a fundamental framework for building support systems for the detection and diagnosis of cough-related diseases.
PDF 21 pages, 5 figures
点此查看论文截图
Adaptive Parametric Prototype Learning for Cross-Domain Few-Shot Classification
Authors:Marzi Heidari, Abdullah Alchihabi, Qing En, Yuhong Guo
Cross-domain few-shot classification induces a much more challenging problem than its in-domain counterpart due to the existence of domain shifts between the training and test tasks. In this paper, we develop a novel Adaptive Parametric Prototype Learning (APPL) method under the meta-learning convention for cross-domain few-shot classification. Different from existing prototypical few-shot methods that use the averages of support instances to calculate the class prototypes, we propose to learn class prototypes from the concatenated features of the support set in a parametric fashion and meta-learn the model by enforcing prototype-based regularization on the query set. In addition, we fine-tune the model in the target domain in a transductive manner using a weighted-moving-average self-training approach on the query instances. We conduct experiments on multiple cross-domain few-shot benchmark datasets. The empirical results demonstrate that APPL yields superior performance than many state-of-the-art cross-domain few-shot learning methods.
PDF
点此查看论文截图
Dual Adversarial Alignment for Realistic Support-Query Shift Few-shot Learning
Authors:Siyang Jiang, Rui Fang, Hsi-Wen Chen, Wei Ding, Ming-Syan Chen
Support-query shift few-shot learning aims to classify unseen examples (query set) to labeled data (support set) based on the learned embedding in a low-dimensional space under a distribution shift between the support set and the query set. However, in real-world scenarios the shifts are usually unknown and varied, making it difficult to estimate in advance. Therefore, in this paper, we propose a novel but more difficult challenge, RSQS, focusing on Realistic Support-Query Shift few-shot learning. The key feature of RSQS is that the individual samples in a meta-task are subjected to multiple distribution shifts in each meta-task. In addition, we propose a unified adversarial feature alignment method called DUal adversarial ALignment framework (DuaL) to relieve RSQS from two aspects, i.e., inter-domain bias and intra-domain variance. On the one hand, for the inter-domain bias, we corrupt the original data in advance and use the synthesized perturbed inputs to train the repairer network by minimizing distance in the feature level. On the other hand, for intra-domain variance, we proposed a generator network to synthesize hard, i.e., less similar, examples from the support set in a self-supervised manner and introduce regularized optimal transportation to derive a smooth optimal transportation plan. Lastly, a benchmark of RSQS is built with several state-of-the-art baselines among three datasets (CIFAR100, mini-ImageNet, and Tiered-Imagenet). Experiment results show that DuaL significantly outperforms the state-of-the-art methods in our benchmark.
PDF Best student paper in PAKDD 2022
点此查看论文截图
Image-Object-Specific Prompt Learning for Few-Shot Class-Incremental Learning
Authors:In-Ug Yoon, Tae-Min Choi, Sun-Kyung Lee, Young-Min Kim, Jong-Hwan Kim
While many FSCIL studies have been undertaken, achieving satisfactory performance, especially during incremental sessions, has remained challenging. One prominent challenge is that the encoder, trained with an ample base session training set, often underperforms in incremental sessions. In this study, we introduce a novel training framework for FSCIL, capitalizing on the generalizability of the Contrastive Language-Image Pre-training (CLIP) model to unseen classes. We achieve this by formulating image-object-specific (IOS) classifiers for the input images. Here, an IOS classifier refers to one that targets specific attributes (like wings or wheels) of class objects rather than the image’s background. To create these IOS classifiers, we encode a bias prompt into the classifiers using our specially designed module, which harnesses key-prompt pairs to pinpoint the IOS features of classes in each session. From an FSCIL standpoint, our framework is structured to retain previous knowledge and swiftly adapt to new sessions without forgetting or overfitting. This considers the updatability of modules in each session and some tricks empirically found for fast convergence. Our approach consistently demonstrates superior performance compared to state-of-the-art methods across the miniImageNet, CIFAR100, and CUB200 datasets. Further, we provide additional experiments to validate our learned model’s ability to achieve IOS classifiers. We also conduct ablation studies to analyze the impact of each module within the architecture.
PDF 8 pages, 4 figures, 4 tables
点此查看论文截图
Phasic Content Fusing Diffusion Model with Directional Distribution Consistency for Few-Shot Model Adaption
Authors:Teng Hu, Jiangning Zhang, Liang Liu, Ran Yi, Siqi Kou, Haokun Zhu, Xu Chen, Yabiao Wang, Chengjie Wang, Lizhuang Ma
Training a generative model with limited number of samples is a challenging task. Current methods primarily rely on few-shot model adaption to train the network. However, in scenarios where data is extremely limited (less than 10), the generative network tends to overfit and suffers from content degradation. To address these problems, we propose a novel phasic content fusing few-shot diffusion model with directional distribution consistency loss, which targets different learning objectives at distinct training stages of the diffusion model. Specifically, we design a phasic training strategy with phasic content fusion to help our model learn content and style information when t is large, and learn local details of target domain when t is small, leading to an improvement in the capture of content, style and local details. Furthermore, we introduce a novel directional distribution consistency loss that ensures the consistency between the generated and source distributions more efficiently and stably than the prior methods, preventing our model from overfitting. Finally, we propose a cross-domain structure guidance strategy that enhances structure consistency during domain adaptation. Theoretical analysis, qualitative and quantitative experiments demonstrate the superiority of our approach in few-shot generative model adaption tasks compared to state-of-the-art methods. The source code is available at: https://github.com/sjtuplayer/few-shot-diffusion.
PDF Accepted by ICCV 2023
点此查看论文截图
Text-to-feature diffusion for audio-visual few-shot learning
Authors:Otniel-Bogdan Mercea, Thomas Hummel, A. Sophia Koepke, Zeynep Akata
Training deep learning models for video classification from audio-visual data commonly requires immense amounts of labeled training data collected via a costly process. A challenging and underexplored, yet much cheaper, setup is few-shot learning from video data. In particular, the inherently multi-modal nature of video data with sound and visual information has not been leveraged extensively for the few-shot video classification task. Therefore, we introduce a unified audio-visual few-shot video classification benchmark on three datasets, i.e. the VGGSound-FSL, UCF-FSL, ActivityNet-FSL datasets, where we adapt and compare ten methods. In addition, we propose AV-DIFF, a text-to-feature diffusion framework, which first fuses the temporal and audio-visual features via cross-modal attention and then generates multi-modal features for the novel classes. We show that AV-DIFF obtains state-of-the-art performance on our proposed benchmark for audio-visual (generalised) few-shot learning. Our benchmark paves the way for effective audio-visual classification when only limited labeled data is available. Code and data are available at https://github.com/ExplainableML/AVDIFF-GFSL.
PDF DAGM GCPR 2023
点此查看论文截图
SimpleNeRF: Regularizing Sparse Input Neural Radiance Fields with Simpler Solutions
Authors:Nagabhushan Somraj, Adithyan Karanayil, Rajiv Soundararajan
Neural Radiance Fields (NeRF) show impressive performance for the photorealistic free-view rendering of scenes. However, NeRFs require dense sampling of images in the given scene, and their performance degrades significantly when only a sparse set of views are available. Researchers have found that supervising the depth estimated by the NeRF helps train it effectively with fewer views. The depth supervision is obtained either using classical approaches or neural networks pre-trained on a large dataset. While the former may provide only sparse supervision, the latter may suffer from generalization issues. As opposed to the earlier approaches, we seek to learn the depth supervision by designing augmented models and training them along with the NeRF. We design augmented models that encourage simpler solutions by exploring the role of positional encoding and view-dependent radiance in training the few-shot NeRF. The depth estimated by these simpler models is used to supervise the NeRF depth estimates. Since the augmented models can be inaccurate in certain regions, we design a mechanism to choose only reliable depth estimates for supervision. Finally, we add a consistency loss between the coarse and fine multi-layer perceptrons of the NeRF to ensure better utilization of hierarchical sampling. We achieve state-of-the-art view-synthesis performance on two popular datasets by employing the above regularizations. The source code for our model can be found on our project page: https://nagabhushansn95.github.io/publications/2023/SimpleNeRF.html
PDF SIGGRAPH Asia 2023
点此查看论文截图
CDFSL-V: Cross-Domain Few-Shot Learning for Videos
Authors:Sarinda Samarasinghe, Mamshad Nayeem Rizve, Navid Kardan, Mubarak Shah
Few-shot video action recognition is an effective approach to recognizing new categories with only a few labeled examples, thereby reducing the challenges associated with collecting and annotating large-scale video datasets. Existing methods in video action recognition rely on large labeled datasets from the same domain. However, this setup is not realistic as novel categories may come from different data domains that may have different spatial and temporal characteristics. This dissimilarity between the source and target domains can pose a significant challenge, rendering traditional few-shot action recognition techniques ineffective. To address this issue, in this work, we propose a novel cross-domain few-shot video action recognition method that leverages self-supervised learning and curriculum learning to balance the information from the source and target domains. To be particular, our method employs a masked autoencoder-based self-supervised training objective to learn from both source and target data in a self-supervised manner. Then a progressive curriculum balances learning the discriminative information from the source dataset with the generic information learned from the target domain. Initially, our curriculum utilizes supervised learning to learn class discriminative features from the source data. As the training progresses, we transition to learning target-domain-specific features. We propose a progressive curriculum to encourage the emergence of rich features in the target domain based on class discriminative supervised features in the source domain. %a schedule that helps with this transition. We evaluate our method on several challenging benchmark datasets and demonstrate that our approach outperforms existing cross-domain few-shot learning techniques. Our code is available at \hyperlink{https://github.com/Sarinda251/CDFSL-V}{https://github.com/Sarinda251/CDFSL-V}
PDF ICCV 2023
点此查看论文截图
S-Adapter: Generalizing Vision Transformer for Face Anti-Spoofing with Statistical Tokens
Authors:Rizhao Cai, Zitong Yu, Chenqi Kong, Haoliang Li, Changsheng Chen, Yongjian Hu, Alex Kot
Face Anti-Spoofing (FAS) aims to detect malicious attempts to invade a face recognition system by presenting spoofed faces. State-of-the-art FAS techniques predominantly rely on deep learning models but their cross-domain generalization capabilities are often hindered by the domain shift problem, which arises due to different distributions between training and testing data. In this study, we develop a generalized FAS method under the Efficient Parameter Transfer Learning (EPTL) paradigm, where we adapt the pre-trained Vision Transformer models for the FAS task. During training, the adapter modules are inserted into the pre-trained ViT model, and the adapters are updated while other pre-trained parameters remain fixed. We find the limitations of previous vanilla adapters in that they are based on linear layers, which lack a spoofing-aware inductive bias and thus restrict the cross-domain generalization. To address this limitation and achieve cross-domain generalized FAS, we propose a novel Statistical Adapter (S-Adapter) that gathers local discriminative and statistical information from localized token histograms. To further improve the generalization of the statistical tokens, we propose a novel Token Style Regularization (TSR), which aims to reduce domain style variance by regularizing Gram matrices extracted from tokens across different domains. Our experimental results demonstrate that our proposed S-Adapter and TSR provide significant benefits in both zero-shot and few-shot cross-domain testing, outperforming state-of-the-art methods on several benchmark tests. We will release the source code upon acceptance.
PDF
点此查看论文截图
Unsupervised Object Localization with Representer Point Selection
Authors:Yeonghwan Song, Seokwoo Jang, Dina Katabi, Jeany Son
We propose a novel unsupervised object localization method that allows us to explain the predictions of the model by utilizing self-supervised pre-trained models without additional finetuning. Existing unsupervised and self-supervised object localization methods often utilize class-agnostic activation maps or self-similarity maps of a pre-trained model. Although these maps can offer valuable information for localization, their limited ability to explain how the model makes predictions remains challenging. In this paper, we propose a simple yet effective unsupervised object localization method based on representer point selection, where the predictions of the model can be represented as a linear combination of representer values of training points. By selecting representer points, which are the most important examples for the model predictions, our model can provide insights into how the model predicts the foreground object by providing relevant examples as well as their importance. Our method outperforms the state-of-the-art unsupervised and self-supervised object localization methods on various datasets with significant margins and even outperforms recent weakly supervised and few-shot methods.
PDF Accepted by ICCV 2023
点此查看论文截图
MoEController: Instruction-based Arbitrary Image Manipulation with Mixture-of-Expert Controllers
Authors:Sijia Li, Chen Chen, Haonan Lu
Diffusion-model-based text-guided image generation has recently made astounding progress, producing fascinating results in open-domain image manipulation tasks. Few models, however, currently have complete zero-shot capabilities for both global and local image editing due to the complexity and diversity of image manipulation tasks. In this work, we propose a method with a mixture-of-expert (MOE) controllers to align the text-guided capacity of diffusion models with different kinds of human instructions, enabling our model to handle various open-domain image manipulation tasks with natural language instructions. First, we use large language models (ChatGPT) and conditional image synthesis models (ControlNet) to generate a large number of global image transfer dataset in addition to the instruction-based local image editing dataset. Then, using an MOE technique and task-specific adaptation training on a large-scale dataset, our conditional diffusion model can edit images globally and locally. Extensive experiments demonstrate that our approach performs surprisingly well on various image manipulation tasks when dealing with open-domain images and arbitrary human instructions. Please refer to our project page: [https://oppo-mente-lab.github.io/moe_controller/]
PDF 5 pages,6 figures
点此查看论文截图
Generalized Cross-domain Multi-label Few-shot Learning for Chest X-rays
Authors:Aroof Aimen, Arsh Verma, Makarand Tapaswi, Narayanan C. Krishnan
Real-world application of chest X-ray abnormality classification requires dealing with several challenges: (i) limited training data; (ii) training and evaluation sets that are derived from different domains; and (iii) classes that appear during training may have partial overlap with classes of interest during evaluation. To address these challenges, we present an integrated framework called Generalized Cross-Domain Multi-Label Few-Shot Learning (GenCDML-FSL). The framework supports overlap in classes during training and evaluation, cross-domain transfer, adopts meta-learning to learn using few training samples, and assumes each chest X-ray image is either normal or associated with one or more abnormalities. Furthermore, we propose Generalized Episodic Training (GenET), a training strategy that equips models to operate with multiple challenges observed in the GenCDML-FSL scenario. Comparisons with well-established methods such as transfer learning, hybrid transfer learning, and multi-label meta-learning on multiple datasets show the superiority of our approach.
PDF 17 pages
点此查看论文截图
Code-Style In-Context Learning for Knowledge-Based Question Answering
Authors:Zhijie Nie, Richong Zhang, Zhongyuan Wang, Xudong Liu
Current methods for Knowledge-Based Question Answering (KBQA) usually rely on complex training techniques and model frameworks, leading to many limitations in practical applications. Recently, the emergence of In-Context Learning (ICL) capabilities in Large Language Models (LLMs) provides a simple and training-free semantic parsing paradigm for KBQA: Given a small number of questions and their labeled logical forms as demo examples, LLMs can understand the task intent and generate the logic form for a new question. However, current powerful LLMs have little exposure to logic forms during pre-training, resulting in a high format error rate. To solve this problem, we propose a code-style in-context learning method for KBQA, which converts the generation process of unfamiliar logical form into the more familiar code generation process for LLMs. Experimental results on three mainstream datasets show that our method dramatically mitigated the formatting error problem in generating logic forms while realizing a new SOTA on WebQSP, GrailQA, and GraphQ under the few-shot setting.
PDF work in progress
点此查看论文截图
MMHQA-ICL: Multimodal In-context Learning for Hybrid Question Answering over Text, Tables and Images
Authors:Weihao Liu, Fangyu Lei, Tongxu Luo, Jiahe Lei, Shizhu He, Jun Zhao, Kang Liu
In the real world, knowledge often exists in a multimodal and heterogeneous form. Addressing the task of question answering with hybrid data types, including text, tables, and images, is a challenging task (MMHQA). Recently, with the rise of large language models (LLM), in-context learning (ICL) has become the most popular way to solve QA problems. We propose MMHQA-ICL framework for addressing this problems, which includes stronger heterogeneous data retriever and an image caption module. Most importantly, we propose a Type-specific In-context Learning Strategy for MMHQA, enabling LLMs to leverage their powerful performance in this task. We are the first to use end-to-end LLM prompting method for this task. Experimental results demonstrate that our framework outperforms all baselines and methods trained on the full dataset, achieving state-of-the-art results under the few-shot setting on the MultimodalQA dataset.
PDF
点此查看论文截图
Few-Shot Medical Image Segmentation via a Region-enhanced Prototypical Transformer
Authors:Yazhou Zhu, Shidong Wang, Tong Xin, Haofeng Zhang
Automated segmentation of large volumes of medical images is often plagued by the limited availability of fully annotated data and the diversity of organ surface properties resulting from the use of different acquisition protocols for different patients. In this paper, we introduce a more promising few-shot learning-based method named Region-enhanced Prototypical Transformer (RPT) to mitigate the effects of large intra-class diversity/bias. First, a subdivision strategy is introduced to produce a collection of regional prototypes from the foreground of the support prototype. Second, a self-selection mechanism is proposed to incorporate into the Bias-alleviated Transformer (BaT) block to suppress or remove interferences present in the query prototype and regional support prototypes. By stacking BaT blocks, the proposed RPT can iteratively optimize the generated regional prototypes and finally produce rectified and more accurate global prototypes for Few-Shot Medical Image Segmentation (FSMS). Extensive experiments are conducted on three publicly available medical image datasets, and the obtained results show consistent improvements compared to state-of-the-art FSMS methods. The source code is available at: https://github.com/YazhouZhu19/RPT.
PDF Accepted by MICCAI
点此查看论文截图
DePT: Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning
Authors:Zhengxiang Shi, Aldo Lipani
Prompt tuning (PT), where a small amount of trainable soft (continuous) prompt vectors is affixed to the input of language models (LM), has shown promising results across various tasks and models for parameter-efficient fine-tuning (PEFT). PT stands out from other PEFT approaches because it maintains competitive performance with fewer trainable parameters and does not drastically scale up its parameters as the model size expands. However, PT introduces additional soft prompt tokens, leading to longer input sequences, which significantly impacts training and inference time and memory usage due to the Transformer’s quadratic complexity. Particularly concerning for Large Language Models (LLMs) that face heavy daily querying. To address this issue, we propose Decomposed Prompt Tuning (DePT), which decomposes the soft prompt into a shorter soft prompt and a pair of low-rank matrices that are then optimised with two different learning rates. This allows DePT to achieve better performance while saving over 20% memory and time costs compared to vanilla PT and its variants, without changing trainable parameter sizes. Through extensive experiments on 23 natural language processing (NLP) and vision-language (VL) tasks, we demonstrate that DePT outperforms state-of-the-art PEFT approaches, including the full fine-tuning baseline in some scenarios. Additionally, we empirically show that DEPT grows more efficient as the model size increases. Our further study reveals that DePT integrates seamlessly with parameter-efficient transfer learning in the few-shot learning setting and highlights its adaptability to various model architectures and sizes.
PDF Code is available at https://github.com/ZhengxiangShi/DePT