场景文本检测识别


2023-09-12 更新

Orientation-Independent Chinese Text Recognition in Scene Images

Authors:Haiyang Yu, Xiaocong Wang, Bin Li, Xiangyang Xue

Scene text recognition (STR) has attracted much attention due to its broad applications. The previous works pay more attention to dealing with the recognition of Latin text images with complex backgrounds by introducing language models or other auxiliary networks. Different from Latin texts, many vertical Chinese texts exist in natural scenes, which brings difficulties to current state-of-the-art STR methods. In this paper, we take the first attempt to extract orientation-independent visual features by disentangling content and orientation information of text images, thus recognizing both horizontal and vertical texts robustly in natural scenes. Specifically, we introduce a Character Image Reconstruction Network (CIRN) to recover corresponding printed character images with disentangled content and orientation information. We conduct experiments on a scene dataset for benchmarking Chinese text recognition, and the results demonstrate that the proposed method can indeed improve performance through disentangling content and orientation information. To further validate the effectiveness of our method, we additionally collect a Vertical Chinese Text Recognition (VCTR) dataset. The experimental results show that the proposed method achieves 45.63% improvement on VCTR when introducing CIRN to the baseline model.
PDF IJCAI 2023

点此查看论文截图

Text-driven Editing of 3D Scenes without Retraining

Authors:Shuangkang Fang, Yufeng Wang, Yi Yang, Yi-Hsuan Tsai, Wenrui Ding, Ming-Hsuan Yang, Shuchang Zhou

Numerous diffusion models have recently been applied to image synthesis and editing. However, editing 3D scenes is still in its early stages. It poses various challenges, such as the requirement to design specific methods for different editing types, retraining new models for various 3D scenes, and the absence of convenient human interaction during editing. To tackle these issues, we introduce a text-driven editing method, termed DN2N, which allows for the direct acquisition of a NeRF model with universal editing capabilities, eliminating the requirement for retraining. Our method employs off-the-shelf text-based editing models of 2D images to modify the 3D scene images, followed by a filtering process to discard poorly edited images that disrupt 3D consistency. We then consider the remaining inconsistency as a problem of removing noise perturbation, which can be solved by generating training data with similar perturbation characteristics for training. We further propose cross-view regularization terms to help the generalized NeRF model mitigate these perturbations. Our text-driven method allows users to edit a 3D scene with their desired description, which is more friendly, intuitive, and practical than prior works. Empirical results show that our method achieves multiple editing types, including but not limited to appearance editing, weather transition, material changing, and style transfer. Most importantly, our method generalizes well with editing abilities shared among a set of model parameters without requiring a customized editing model for some specific scenes, thus inferring novel views with editing effects directly from user input. The project website is available at http://sk-fun.fun/DN2N
PDF Project Website: http://sk-fun.fun/DN2N

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录