无监督/半监督/对比学习


2023-08-26 更新

ICPC: Instance-Conditioned Prompting with Contrastive Learning for Semantic Segmentation

Authors:Chaohui Yu, Qiang Zhou, Zhibin Wang, Fan Wang

Modern supervised semantic segmentation methods are usually finetuned based on the supervised or self-supervised models pre-trained on ImageNet. Recent work shows that transferring the knowledge from CLIP to semantic segmentation via prompt learning can achieve promising performance. The performance boost comes from the feature enhancement with multimodal alignment, i.e., the dot product between vision and text embeddings. However, how to improve the multimodal alignment for better transfer performance in dense tasks remains underexplored. In this work, we focus on improving the quality of vision-text alignment from two aspects of prompting design and loss function, and present an instance-conditioned prompting with contrastive learning (ICPC) framework. First, compared with the static prompt designs, we reveal that dynamic prompting conditioned on image content can more efficiently utilize the text encoder for complex dense tasks. Second, we propose an align-guided contrastive loss to refine the alignment of vision and text embeddings. We further propose lightweight multi-scale alignment for better performance. Extensive experiments on three large-scale datasets (ADE20K, COCO-Stuff10k, and ADE20K-Full) demonstrate that ICPC brings consistent improvements across diverse backbones. Taking ResNet-50 as an example, ICPC outperforms the state-of-the-art counterpart by 1.71%, 1.05%, and 1.41% mIoU on the three datasets, respectively.
PDF

点此查看论文截图

CTP: Towards Vision-Language Continual Pretraining via Compatible Momentum Contrast and Topology Preservation

Authors:Hongguang Zhu, Yunchao Wei, Xiaodan Liang, Chunjie Zhang, Yao Zhao

Vision-Language Pretraining (VLP) has shown impressive results on diverse downstream tasks by offline training on large-scale datasets. Regarding the growing nature of real-world data, such an offline training paradigm on ever-expanding data is unsustainable, because models lack the continual learning ability to accumulate knowledge constantly. However, most continual learning studies are limited to uni-modal classification and existing multi-modal datasets cannot simulate continual non-stationary data stream scenarios. To support the study of Vision-Language Continual Pretraining (VLCP), we first contribute a comprehensive and unified benchmark dataset P9D which contains over one million product image-text pairs from 9 industries. The data from each industry as an independent task supports continual learning and conforms to the real-world long-tail nature to simulate pretraining on web data. We comprehensively study the characteristics and challenges of VLCP, and propose a new algorithm: Compatible momentum contrast with Topology Preservation, dubbed CTP. The compatible momentum model absorbs the knowledge of the current and previous-task models to flexibly update the modal feature. Moreover, Topology Preservation transfers the knowledge of embedding across tasks while preserving the flexibility of feature adjustment. The experimental results demonstrate our method not only achieves superior performance compared with other baselines but also does not bring an expensive training burden. Dataset and codes are available at https://github.com/KevinLight831/CTP.
PDF Accepted by ICCV 2023. Code: https://github.com/KevinLight831/CTP

点此查看论文截图

Contrastive Learning for Lane Detection via Cross-Similarity

Authors:Ali Zoljodi, Sadegh Abadijou, Mina Alibeigi, Masoud Daneshtalab

Detecting road lanes is challenging due to intricate markings vulnerable to unfavorable conditions. Lane markings have strong shape priors, but their visibility is easily compromised. Factors like lighting, weather, vehicles, pedestrians, and aging colors challenge the detection. A large amount of data is required to train a lane detection approach that can withstand natural variations caused by low visibility. This is because there are numerous lane shapes and natural variations that exist. Our solution, Contrastive Learning for Lane Detection via cross-similarity (CLLD), is a self-supervised learning method that tackles this challenge by enhancing lane detection models resilience to real-world conditions that cause lane low visibility. CLLD is a novel multitask contrastive learning that trains lane detection approaches to detect lane markings even in low visible situations by integrating local feature contrastive learning (CL) with our new proposed operation cross-similarity. Local feature CL focuses on extracting features for small image parts, which is necessary to localize lane segments, while cross-similarity captures global features to detect obscured lane segments using their surrounding. We enhance cross-similarity by randomly masking parts of input images for augmentation. Evaluated on benchmark datasets, CLLD outperforms state-of-the-art contrastive learning, especially in visibility-impairing conditions like shadows. Compared to supervised learning, CLLD excels in scenarios like shadows and crowded scenes.
PDF 10 pages

点此查看论文截图

A White-Box False Positive Adversarial Attack Method on Contrastive Loss-Based Offline Handwritten Signature Verification Models

Authors:Zhongliang Guo, Yifei Qian, Ognjen Arandjelović, Lei Fang

In this paper, we tackle the challenge of white-box false positive adversarial attacks on contrastive loss-based offline handwritten signature verification models. We propose a novel attack method that treats the attack as a style transfer between closely related but distinct writing styles. To guide the generation of deceptive images, we introduce two new loss functions that enhance the attack success rate by perturbing the Euclidean distance between the embedding vectors of the original and synthesized samples, while ensuring minimal perturbations by reducing the difference between the generated image and the original image. Our method demonstrates state-of-the-art performance in white-box attacks on contrastive loss-based offline handwritten signature verification models, as evidenced by our experiments. The key contributions of this paper include a novel false positive attack method, two new loss functions, effective style transfer in handwriting styles, and superior performance in white-box false positive attacks compared to other white-box attack methods.
PDF 8 pages, 3 figures

点此查看论文截图

Rethinking Image Forgery Detection via Contrastive Learning and Unsupervised Clustering

Authors:Haiwei Wu, Yiming Chen, Jiantao Zhou

Image forgery detection aims to detect and locate forged regions in an image. Most existing forgery detection algorithms formulate classification problems to classify pixels into forged or pristine. However, the definition of forged and pristine pixels is only relative within one single image, e.g., a forged region in image A is actually a pristine one in its source image B (splicing forgery). Such a relative definition has been severely overlooked by existing methods, which unnecessarily mix forged (pristine) regions across different images into the same category. To resolve this dilemma, we propose the FOrensic ContrAstive cLustering (FOCAL) method, a novel, simple yet very effective paradigm based on contrastive learning and unsupervised clustering for the image forgery detection. Specifically, FOCAL 1) utilizes pixel-level contrastive learning to supervise the high-level forensic feature extraction in an image-by-image manner, explicitly reflecting the above relative definition; 2) employs an on-the-fly unsupervised clustering algorithm (instead of a trained one) to cluster the learned features into forged/pristine categories, further suppressing the cross-image influence from training data; and 3) allows to further boost the detection performance via simple feature-level concatenation without the need of retraining. Extensive experimental results over six public testing datasets demonstrate that our proposed FOCAL significantly outperforms the state-of-the-art competing algorithms by big margins: +24.3% on Coverage, +18.6% on Columbia, +17.5% on FF++, +14.2% on MISD, +13.5% on CASIA and +10.3% on NIST in terms of IoU. The paradigm of FOCAL could bring fresh insights and serve as a novel benchmark for the image forgery detection task. The code is available at https://github.com/HighwayWu/FOCAL.
PDF

点此查看论文截图

Decoupled conditional contrastive learning with variable metadata for prostate lesion detection

Authors:Camille Ruppli, Pietro Gori, Roberto Ardon, Isabelle Bloch

Early diagnosis of prostate cancer is crucial for efficient treatment. Multi-parametric Magnetic Resonance Images (mp-MRI) are widely used for lesion detection. The Prostate Imaging Reporting and Data System (PI-RADS) has standardized interpretation of prostate MRI by defining a score for lesion malignancy. PI-RADS data is readily available from radiology reports but is subject to high inter-reports variability. We propose a new contrastive loss function that leverages weak metadata with multiple annotators per sample and takes advantage of inter-reports variability by defining metadata confidence. By combining metadata of varying confidence with unannotated data into a single conditional contrastive loss function, we report a 3% AUC increase on lesion detection on the public PI-CAI challenge dataset. Code is available at: https://github.com/camilleruppli/decoupled_ccl
PDF Accepted at MILLanD workshop (MICCAI)

点此查看论文截图

CoNe: Contrast Your Neighbours for Supervised Image Classification

Authors:Mingkai Zheng, Shan You, Lang Huang, Xiu Su, Fei Wang, Chen Qian, Xiaogang Wang, Chang Xu

Image classification is a longstanding problem in computer vision and machine learning research. Most recent works (e.g. SupCon , Triplet, and max-margin) mainly focus on grouping the intra-class samples aggressively and compactly, with the assumption that all intra-class samples should be pulled tightly towards their class centers. However, such an objective will be very hard to achieve since it ignores the intra-class variance in the dataset. (i.e. different instances from the same class can have significant differences). Thus, such a monotonous objective is not sufficient. To provide a more informative objective, we introduce Contrast Your Neighbours (CoNe) - a simple yet practical learning framework for supervised image classification. Specifically, in CoNe, each sample is not only supervised by its class center but also directly employs the features of its similar neighbors as anchors to generate more adaptive and refined targets. Moreover, to further boost the performance, we propose ``distributional consistency” as a more informative regularization to enable similar instances to have a similar probability distribution. Extensive experimental results demonstrate that CoNe achieves state-of-the-art performance across different benchmark datasets, network architectures, and settings. Notably, even without a complicated training recipe, our CoNe achieves 80.8\% Top-1 accuracy on ImageNet with ResNet-50, which surpasses the recent Timm training recipe (80.4\%). Code and pre-trained models are available at \href{https://github.com/mingkai-zheng/CoNe}{https://github.com/mingkai-zheng/CoNe}.
PDF

点此查看论文截图

Composed Image Retrieval using Contrastive Learning and Task-oriented CLIP-based Features

Authors:Alberto Baldrati, Marco Bertini, Tiberio Uricchio, Alberto del Bimbo

Given a query composed of a reference image and a relative caption, the Composed Image Retrieval goal is to retrieve images visually similar to the reference one that integrates the modifications expressed by the caption. Given that recent research has demonstrated the efficacy of large-scale vision and language pre-trained (VLP) models in various tasks, we rely on features from the OpenAI CLIP model to tackle the considered task. We initially perform a task-oriented fine-tuning of both CLIP encoders using the element-wise sum of visual and textual features. Then, in the second stage, we train a Combiner network that learns to combine the image-text features integrating the bimodal information and providing combined features used to perform the retrieval. We use contrastive learning in both stages of training. Starting from the bare CLIP features as a baseline, experimental results show that the task-oriented fine-tuning and the carefully crafted Combiner network are highly effective and outperform more complex state-of-the-art approaches on FashionIQ and CIRR, two popular and challenging datasets for composed image retrieval. Code and pre-trained models are available at https://github.com/ABaldrati/CLIP4Cir
PDF Accepted in ACM Transactions on Multimedia Computing Communications and Applications (TOMM)

点此查看论文截图

Age Prediction From Face Images Via Contrastive Learning

Authors:Yeongnam Chae, Poulami Raha, Mijung Kim, Bjorn Stenger

This paper presents a novel approach for accurately estimating age from face images, which overcomes the challenge of collecting a large dataset of individuals with the same identity at different ages. Instead, we leverage readily available face datasets of different people at different ages and aim to extract age-related features using contrastive learning. Our method emphasizes these relevant features while suppressing identity-related features using a combination of cosine similarity and triplet margin losses. We demonstrate the effectiveness of our proposed approach by achieving state-of-the-art performance on two public datasets, FG-NET and MORPH-II.
PDF MVA2023

点此查看论文截图

Understanding Dark Scenes by Contrasting Multi-Modal Observations

Authors:Xiaoyu Dong, Naoto Yokoya

Understanding dark scenes based on multi-modal image data is challenging, as both the visible and auxiliary modalities provide limited semantic information for the task. Previous methods focus on fusing the two modalities but neglect the correlations among semantic classes when minimizing losses to align pixels with labels, resulting in inaccurate class predictions. To address these issues, we introduce a supervised multi-modal contrastive learning approach to increase the semantic discriminability of the learned multi-modal feature spaces by jointly performing cross-modal and intra-modal contrast under the supervision of the class correlations. The cross-modal contrast encourages same-class embeddings from across the two modalities to be closer and pushes different-class ones apart. The intra-modal contrast forces same-class or different-class embeddings within each modality to be together or apart. We validate our approach on a variety of tasks that cover diverse light conditions and image modalities. Experiments show that our approach can effectively enhance dark scene understanding based on multi-modal images with limited semantics by shaping semantic-discriminative feature spaces. Comparisons with previous methods demonstrate our state-of-the-art performance. Code and pretrained models are available at https://github.com/palmdong/SMMCL.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录