无监督/半监督/对比学习


2023-01-26 更新

Triplet Contrastive Learning for Unsupervised Vehicle Re-identification

Authors:Fei Shen, Xiaoyu Du, Liyan Zhang, Jinhui Tang

Part feature learning is a critical technology for finegrained semantic understanding in vehicle re-identification. However, recent unsupervised re-identification works exhibit serious gradient collapse issues when directly modeling the part features and global features. To address this problem, in this paper, we propose a novel Triplet Contrastive Learning framework (TCL) which leverages cluster features to bridge the part features and global features. Specifically, TCL devises three memory banks to store the features according to their attributes and proposes a proxy contrastive loss (PCL) to make contrastive learning between adjacent memory banks, thus presenting the associations between the part and global features as a transition of the partcluster and cluster-global associations. Since the cluster memory bank deals with all the instance features, it can summarize them into a discriminative feature representation. To deeply exploit the instance information, TCL proposes two additional loss functions. For the inter-class instance, a hybrid contrastive loss (HCL) re-defines the sample correlations by approaching the positive cluster features and leaving the all negative instance features. For the intra-class instances, a weighted regularization cluster contrastive loss (WRCCL) refines the pseudo labels by penalizing the mislabeled images according to the instance similarity. Extensive experiments show that TCL outperforms many state-of-the-art unsupervised vehicle re-identification approaches. The code will be available at https://github.com/muzishen/TCL.
PDF Code: https://github.com/muzishen/TCL

点此查看论文截图

Causality-based Dual-Contrastive Learning Framework for Domain Generalization

Authors:Zining Chen, Weiqiu Wang, Zhicheng Zhao, Aidong Men

Domain Generalization (DG) is essentially a sub-branch of out-of-distribution generalization, which trains models from multiple source domains and generalizes to unseen target domains. Recently, some domain generalization algorithms have emerged, but most of them were designed with non-transferable complex architecture. Additionally, contrastive learning has become a promising solution for simplicity and efficiency in DG. However, existing contrastive learning neglected domain shifts that caused severe model confusions. In this paper, we propose a Dual-Contrastive Learning (DCL) module on feature and prototype contrast. Moreover, we design a novel Causal Fusion Attention (CFA) module to fuse diverse views of a single image to attain prototype. Furthermore, we introduce a Similarity-based Hard-pair Mining (SHM) strategy to leverage information on diversity shift. Extensive experiments show that our method outperforms state-of-the-art algorithms on three DG datasets. The proposed algorithm can also serve as a plug-and-play module without usage of domain labels.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录