Diffusion Models

2023-01-18 更新

TDSTF: Transformer-based Diffusion probabilistic model for Sparse Time series Forecasting

Authors:Ping Chang, Huayu Li, Stuart F. Quan, Janet Roveda, Ao Li

Time series probabilistic forecasting with multi-dimensional and sporadic data (known as sparse data) has potential to implement monitoring kinds of physiological indices of patients in Intensive Care Unit (ICU). In this paper, we propose Transformer-based Diffusion probabilistic model for Sparse Time series Forecasting (TDSTF), a new model to predict distribution of highly sparse time series. There are many works that focus on probabilistic forecasting, but few of them avoid noise that come from extreme sparsity of data. We take advantage of Triplet, a data organization that represents sparse time series in a much efficient way, for our model to bypass data redundancy in the traditional matrix form. The proposed model performed better on MIMIC-III ICU dataset than the current state-of-the-art probabilistic forecasting models. We obtained normalized average continuous ranked probability score (CRPS) of $\mathbf{0.4379}$, and mean squared error (MSE) of $\mathbf{0.4008}$ when adopting the median of the model samplings as the deterministic forecasting. Our code is provided at https://github.com/PingChang818/TDSTF.


Denoising Diffusion Probabilistic Models as a Defense against Adversarial Attacks

Authors:Lars Lien Ankile, Anna Midgley, Sebastian Weisshaar

Neural Networks are infamously sensitive to small perturbations in their inputs, making them vulnerable to adversarial attacks. This project evaluates the performance of Denoising Diffusion Probabilistic Models (DDPM) as a purification technique to defend against adversarial attacks. This works by adding noise to an adversarial example before removing it through the reverse process of the diffusion model. We evaluate the approach on the PatchCamelyon data set for histopathologic scans of lymph node sections and find an improvement of the robust accuracy by up to 88\% of the original model’s accuracy, constituting a considerable improvement over the vanilla model and our baselines. The project code is located at https://github.com/ankile/Adversarial-Diffusion.


GLIGEN: Open-Set Grounded Text-to-Image Generation

Authors:Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan Li, Yong Jae Lee

Large-scale text-to-image diffusion models have made amazing advances. However, the status quo is to use text input alone, which can impede controllability. In this work, we propose GLIGEN, Grounded-Language-to-Image Generation, a novel approach that builds upon and extends the functionality of existing pre-trained text-to-image diffusion models by enabling them to also be conditioned on grounding inputs. To preserve the vast concept knowledge of the pre-trained model, we freeze all of its weights and inject the grounding information into new trainable layers via a gated mechanism. Our model achieves open-world grounded text2img generation with caption and bounding box condition inputs, and the grounding ability generalizes well to novel spatial configuration and concepts. GLIGEN’s zero-shot performance on COCO and LVIS outperforms that of existing supervised layout-to-image baselines by a large margin.


Diffusion-based Generation, Optimization, and Planning in 3D Scenes

Authors:Siyuan Huang, Zan Wang, Puhao Li, Baoxiong Jia, Tengyu Liu, Yixin Zhu, Wei Liang, Song-Chun Zhu

We introduce SceneDiffuser, a conditional generative model for 3D scene understanding. SceneDiffuser provides a unified model for solving scene-conditioned generation, optimization, and planning. In contrast to prior works, SceneDiffuser is intrinsically scene-aware, physics-based, and goal-oriented. With an iterative sampling strategy, SceneDiffuser jointly formulates the scene-aware generation, physics-based optimization, and goal-oriented planning via a diffusion-based denoising process in a fully differentiable fashion. Such a design alleviates the discrepancies among different modules and the posterior collapse of previous scene-conditioned generative models. We evaluate SceneDiffuser with various 3D scene understanding tasks, including human pose and motion generation, dexterous grasp generation, path planning for 3D navigation, and motion planning for robot arms. The results show significant improvements compared with previous models, demonstrating the tremendous potential of SceneDiffuser for the broad community of 3D scene understanding.
PDF 20 pages


文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !