2022-12-08 更新
SDM: Spatial Diffusion Model for Large Hole Image Inpainting
Authors:Wenbo Li, Xin Yu, Kun Zhou, Yibing Song, Zhe Lin, Jiaya Jia
Generative adversarial networks (GANs) have made great success in image inpainting yet still have difficulties tackling large missing regions. In contrast, iterative algorithms, such as autoregressive and denoising diffusion models, have to be deployed with massive computing resources for decent effect. To overcome the respective limitations, we present a novel spatial diffusion model (SDM) that uses a few iterations to gradually deliver informative pixels to the entire image, largely enhancing the inference efficiency. Also, thanks to the proposed decoupled probabilistic modeling and spatial diffusion scheme, our method achieves high-quality large-hole completion. On multiple benchmarks, we achieve new state-of-the-art performance. Code is released at https://github.com/fenglinglwb/SDM.
PDF 18 pages, 14 figures
点此查看论文截图
Diffusion Video Autoencoders: Toward Temporally Consistent Face Video Editing via Disentangled Video Encoding
Authors:Gyeongman Kim, Hajin Shim, Hyunsu Kim, Yunjey Choi, Junho Kim, Eunho Yang
Inspired by the impressive performance of recent face image editing methods, several studies have been naturally proposed to extend these methods to the face video editing task. One of the main challenges here is temporal consistency among edited frames, which is still unresolved. To this end, we propose a novel face video editing framework based on diffusion autoencoders that can successfully extract the decomposed features - for the first time as a face video editing model - of identity and motion from a given video. This modeling allows us to edit the video by simply manipulating the temporally invariant feature to the desired direction for the consistency. Another unique strength of our model is that, since our model is based on diffusion models, it can satisfy both reconstruction and edit capabilities at the same time, and is robust to corner cases in wild face videos (e.g. occluded faces) unlike the existing GAN-based methods.
PDF The code will be available soon
点此查看论文截图
ConfounderGAN: Protecting Image Data Privacy with Causal Confounder
Authors:Qi Tian, Kun Kuang, Kelu Jiang, Furui Liu, Zhihua Wang, Fei Wu
The success of deep learning is partly attributed to the availability of massive data downloaded freely from the Internet. However, it also means that users’ private data may be collected by commercial organizations without consent and used to train their models. Therefore, it’s important and necessary to develop a method or tool to prevent unauthorized data exploitation. In this paper, we propose ConfounderGAN, a generative adversarial network (GAN) that can make personal image data unlearnable to protect the data privacy of its owners. Specifically, the noise produced by the generator for each image has the confounder property. It can build spurious correlations between images and labels, so that the model cannot learn the correct mapping from images to labels in this noise-added dataset. Meanwhile, the discriminator is used to ensure that the generated noise is small and imperceptible, thereby remaining the normal utility of the encrypted image for humans. The experiments are conducted in six image classification datasets, consisting of three natural object datasets and three medical datasets. The results demonstrate that our method not only outperforms state-of-the-art methods in standard settings, but can also be applied to fast encryption scenarios. Moreover, we show a series of transferability and stability experiments to further illustrate the effectiveness and superiority of our method.
PDF
点此查看论文截图
StyleGAN as a Utility-Preserving Face De-identification Method
Authors:Seyyed Mohammad Sadegh Moosavi Khorzooghi, Shirin Nilizadeh
Several face de-identification methods have been proposed to preserve users’ privacy by obscuring their faces. These methods, however, can degrade the quality of photos, and they usually do not preserve the utility of faces, e.g., their age, gender, pose, and facial expression. Recently, advanced generative adversarial network models, such as StyleGAN, have been proposed, which generate realistic, high-quality imaginary faces. In this paper, we investigate the use of StyleGAN in generating de-identified faces through style mixing, where the styles or features of the target face and an auxiliary face get mixed to generate a de-identified face that carries the utilities of the target face. We examined this de-identification method with respect to preserving utility and privacy, by implementing several face detection, verification, and identification attacks. Through extensive experiments and also comparing with two state-of-the-art face de-identification methods, we show that StyleGAN preserves the quality and utility of the faces much better than the other approaches and also by choosing the style mixing levels correctly, it can preserve the privacy of the faces much better than other methods.
PDF
点此查看论文截图
QC-StyleGAN — Quality Controllable Image Generation and Manipulation
Authors:Dat Viet Thanh Nguyen, Phong Tran The, Tan M. Dinh, Cuong Pham, Anh Tuan Tran
The introduction of high-quality image generation models, particularly the StyleGAN family, provides a powerful tool to synthesize and manipulate images. However, existing models are built upon high-quality (HQ) data as desired outputs, making them unfit for in-the-wild low-quality (LQ) images, which are common inputs for manipulation. In this work, we bridge this gap by proposing a novel GAN structure that allows for generating images with controllable quality. The network can synthesize various image degradation and restore the sharp image via a quality control code. Our proposed QC-StyleGAN can directly edit LQ images without altering their quality by applying GAN inversion and manipulation techniques. It also provides for free an image restoration solution that can handle various degradations, including noise, blur, compression artifacts, and their mixtures. Finally, we demonstrate numerous other applications such as image degradation synthesis, transfer, and interpolation. The code is available at https://github.com/VinAIResearch/QC-StyleGAN.
PDF Accepted to NeurIPS 2022; The code is available at https://github.com/VinAIResearch/QC-StyleGAN
点此查看论文截图
Decoding natural image stimuli from fMRI data with a surface-based convolutional network
Authors:Zijin Gu, Keith Jamison, Amy Kuceyeski, Mert Sabuncu
Due to the low signal-to-noise ratio and limited resolution of functional MRI data, and the high complexity of natural images, reconstructing a visual stimulus from human brain fMRI measurements is a challenging task. In this work, we propose a novel approach for this task, which we call Cortex2Image, to decode visual stimuli with high semantic fidelity and rich fine-grained detail. In particular, we train a surface-based convolutional network model that maps from brain response to semantic image features first (Cortex2Semantic). We then combine this model with a high-quality image generator (Instance-Conditioned GAN) to train another mapping from brain response to fine-grained image features using a variational approach (Cortex2Detail). Image reconstructions obtained by our proposed method achieve state-of-the-art semantic fidelity, while yielding good fine-grained similarity with the ground-truth stimulus. Our code is available at: https://github.com/zijin-gu/meshconv-decoding.git.
PDF
点此查看论文截图
NeRFEditor: Differentiable Style Decomposition for Full 3D Scene Editing
Authors:Chunyi Sun, Yanbing Liu, Junlin Han, Stephen Gould
We present NeRFEditor, an efficient learning framework for 3D scene editing, which takes a video captured over 360{\deg} as input and outputs a high-quality, identity-preserving stylized 3D scene. Our method supports diverse types of editing such as guided by reference images, text prompts, and user interactions. We achieve this by encouraging a pre-trained StyleGAN model and a NeRF model to learn from each other mutually. Specifically, we use a NeRF model to generate numerous image-angle pairs to train an adjustor, which can adjust the StyleGAN latent code to generate high-fidelity stylized images for any given angle. To extrapolate editing to GAN out-of-domain views, we devise another module that is trained in a self-supervised learning manner. This module maps novel-view images to the hidden space of StyleGAN that allows StyleGAN to generate stylized images on novel views. These two modules together produce guided images in 360{\deg}views to finetune a NeRF to make stylization effects, where a stable fine-tuning strategy is proposed to achieve this. Experiments show that NeRFEditor outperforms prior work on benchmark and real-world scenes with better editability, fidelity, and identity preservation.
PDF Project page: https://chuny1.github.io/NeRFEditor/nerfeditor.html
点此查看论文截图
LatentSwap3D: Semantic Edits on 3D Image GANs
Authors:Enis Simsar, Alessio Tonioni, Evin Pınar Örnek, Federico Tombari
Recent 3D-aware GANs rely on volumetric rendering techniques to disentangle the pose and appearance of objects, de facto generating entire 3D volumes rather than single-view 2D images from a latent code. Complex image editing tasks can be performed in standard 2D-based GANs (e.g., StyleGAN models) as manipulation of latent dimensions. However, to the best of our knowledge, similar properties have only been partially explored for 3D-aware GAN models. This work aims to fill this gap by showing the limitations of existing methods and proposing LatentSwap3D, a model-agnostic approach designed to enable attribute editing in the latent space of pre-trained 3D-aware GANs. We first identify the most relevant dimensions in the latent space of the model controlling the targeted attribute by relying on the feature importance ranking of a random forest classifier. Then, to apply the transformation, we swap the top-K most relevant latent dimensions of the image being edited with an image exhibiting the desired attribute. Despite its simplicity, LatentSwap3D provides remarkable semantic edits in a disentangled manner and outperforms alternative approaches both qualitatively and quantitatively. We demonstrate our semantic edit approach on various 3D-aware generative models such as pi-GAN, GIRAFFE, StyleSDF, MVCGAN, EG3D and VolumeGAN, and on diverse datasets, such as FFHQ, AFHQ, Cats, MetFaces, and CompCars. The project page can be found: \url{https://enisimsar.github.io/latentswap3d/}.
PDF
点此查看论文截图
GLeaD: Improving GANs with A Generator-Leading Task
Authors:Qingyan Bai, Ceyuan Yang, Yinghao Xu, Xihui Liu, Yujiu Yang, Yujun Shen
Generative adversarial network (GAN) is formulated as a two-player game between a generator (G) and a discriminator (D), where D is asked to differentiate whether an image comes from real data or is produced by G. Under such a formulation, D plays as the rule maker and hence tends to dominate the competition. Towards a fairer game in GANs, we propose a new paradigm for adversarial training, which makes G assign a task to D as well. Specifically, given an image, we expect D to extract representative features that can be adequately decoded by G to reconstruct the input. That way, instead of learning freely, D is urged to align with the view of G for domain classification. Experimental results on various datasets demonstrate the substantial superiority of our approach over the baselines. For instance, we improve the FID of StyleGAN2 from 4.30 to 2.55 on LSUN Bedroom and from 4.04 to 2.82 on LSUN Church. We believe that the pioneering attempt present in this work could inspire the community with better designed generator-leading tasks for GAN improvement.
PDF Project page: https://ezioby.github.io/glead/ Code: https://github.com/EzioBy/glead/