Vision Transformer


2022-11-15 更新

Understanding and Mitigating Overfitting in Prompt Tuning for Vision-Language Models

Authors:Chengcheng Ma, Yang Liu, Jiankang Deng, Lingxi Xie, Weiming Dong, Changsheng Xu

Pre-trained Vision-Language Models (VLMs) such as CLIP have shown impressive generalization capability in downstream vision tasks with appropriate text prompts. Instead of designing prompts manually, Context Optimization (CoOp) has been recently proposed to learn continuous prompts using task-specific training data. Despite the performance improvements on downstream tasks, several studies have reported that CoOp suffers from the overfitting issue in two aspects: (i) the test accuracy on base classes first gets better and then gets worse during training; (ii) the test accuracy on novel classes keeps decreasing. However, none of the existing studies can understand and mitigate such overfitting problem effectively. In this paper, we first explore the cause of overfitting by analyzing the gradient flow. Comparative experiments reveal that CoOp favors generalizable and spurious features in the early and later training stages respectively, leading to the non-overfitting and overfitting phenomenon. Given those observations, we propose Subspace Prompt Tuning (SubPT) to project the gradients in back-propagation onto the low-rank subspace spanned by the early-stage gradient flow eigenvectors during the entire training process, and successfully eliminate the overfitting problem. Besides, we equip CoOp with Novel Feature Learner (NFL) to enhance the generalization ability of the learned prompts onto novel categories beyond the training set, needless of image training data. Extensive experiments on 11 classification datasets demonstrate that SubPT+NFL consistently boost the performance of CoOp and outperform the state-of-the-art approach CoCoOp. Experiments on more challenging vision downstream tasks including open-vocabulary object detection and zero-shot semantic segmentation also verify the effectiveness of the proposed method. Codes can be found at https://tinyurl.com/mpe64f89.
PDF

点此查看论文截图

AU-Aware Vision Transformers for Biased Facial Expression Recognition

Authors:Shuyi Mao, Xinpeng Li, Qingyang Wu, Xiaojiang Peng

Studies have proven that domain bias and label bias exist in different Facial Expression Recognition (FER) datasets, making it hard to improve the performance of a specific dataset by adding other datasets. For the FER bias issue, recent researches mainly focus on the cross-domain issue with advanced domain adaption algorithms. This paper addresses another problem: how to boost FER performance by leveraging cross-domain datasets. Unlike the coarse and biased expression label, the facial Action Unit (AU) is fine-grained and objective suggested by psychological studies. Motivated by this, we resort to the AU information of different FER datasets for performance boosting and make contributions as follows. First, we experimentally show that the naive joint training of multiple FER datasets is harmful to the FER performance of individual datasets. We further introduce expression-specific mean images and AU cosine distances to measure FER dataset bias. This novel measurement shows consistent conclusions with experimental degradation of joint training. Second, we propose a simple yet conceptually-new framework, AU-aware Vision Transformer (AU-ViT). It improves the performance of individual datasets by jointly training auxiliary datasets with AU or pseudo-AU labels. We also find that the AU-ViT is robust to real-world occlusions. Moreover, for the first time, we prove that a carefully-initialized ViT achieves comparable performance to advanced deep convolutional networks. Our AU-ViT achieves state-of-the-art performance on three popular datasets, namely 91.10% on RAF-DB, 65.59% on AffectNet, and 90.15% on FERPlus. The code and models will be released soon.
PDF

点此查看论文截图

EVA: Exploring the Limits of Masked Visual Representation Learning at Scale

Authors:Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong Wang, Yue Cao

We launch EVA, a vision-centric foundation model to explore the limits of visual representation at scale using only publicly accessible data. EVA is a vanilla ViT pre-trained to reconstruct the masked out image-text aligned vision features conditioned on visible image patches. Via this pretext task, we can efficiently scale up EVA to one billion parameters, and sets new records on a broad range of representative vision downstream tasks, such as image recognition, video action recognition, object detection, instance segmentation and semantic segmentation without heavy supervised training. Moreover, we observe quantitative changes in scaling EVA result in qualitative changes in transfer learning performance that are not present in other models. For instance, EVA takes a great leap in the challenging large vocabulary instance segmentation task: our model achieves almost the same state-of-the-art performance on LVISv1.0 dataset with over a thousand categories and COCO dataset with only eighty categories. Beyond a pure vision encoder, EVA can also serve as a vision-centric, multi-modal pivot to connect images and text. We find initializing the vision tower of a giant CLIP from EVA can greatly stabilize the training and outperform the training from scratch counterpart with much fewer samples and less compute, providing a new direction for scaling up and accelerating the costly training of multi-modal foundation models. To facilitate future research, we will release all the code and models at \url{https://github.com/baaivision/EVA}.
PDF EVA Unit-01 Launched!

点此查看论文截图

SimpleClick: Interactive Image Segmentation with Simple Vision Transformers

Authors:Qin Liu, Zhenlin Xu, Gedas Bertasius, Marc Niethammer

Click-based interactive image segmentation aims at extracting objects with limited user clicking. A hierarchical backbone is the de-facto architecture for current methods. Recently, the plain, non-hierarchical Vision Transformer (ViT) has emerged as a competitive backbone for dense prediction tasks. This design allows the original ViT to be a foundation model that can be finetuned for downstream tasks without redesigning a hierarchical backbone for pretraining. Although this design is simple and has been proven effective, it has not yet been explored for interactive segmentation. To fill this gap, we propose the first plain-backbone method, termed SimpleClick due to its simplicity in architecture, for interactive segmentation. With the plain backbone pretrained as a masked autoencoder (MAE), SimpleClick achieves state-of-the-art performance. Remarkably, our method achieves 4.15 NoC@90 on SBD, improving 21.8% over the previous best result. Extensive evaluation on medical images shows the generalizability of our method. We also provide a detailed analysis of the computational cost for our method, highlighting its suitability as a practical annotation tool.
PDF Tech Report

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录