Vision Transformer


2022-10-30 更新

Broken Neural Scaling Laws

Authors:Ethan Caballero, Kshitij Gupta, Irina Rish, David Krueger

We present a smoothly broken power law functional form that accurately models and extrapolates the scaling behaviors of deep neural networks (i.e. how the evaluation metric of interest varies as the amount of compute used for training, number of model parameters, or training dataset size varies) for each task within a large and diverse set of upstream and downstream tasks, in zero-shot, prompted, and fine-tuned settings. This set includes large-scale vision and unsupervised language tasks, diffusion generative modeling of images, arithmetic, and reinforcement learning. When compared to other functional forms for neural scaling behavior, this functional form yields extrapolations of scaling behavior that often are considerably more accurate (root mean squared log error of its extrapolations are 0.86 times that of previous state-of-the-art on average) on this set. Moreover, this functional form accurately models and extrapolates scaling behavior that other functional forms are incapable of expressing such as the non-monotonic transitions present in the scaling behavior of phenomena such as double descent and the delayed, sharp inflection points present in the scaling behavior of tasks such as arithmetic. Code is available at https://github.com/ethancaballero/broken_neural_scaling_laws
PDF

点此查看论文截图

The Robustness Limits of SoTA Vision Models to Natural Variation

Authors:Mark Ibrahim, Quentin Garrido, Ari Morcos, Diane Bouchacourt

Recent state-of-the-art vision models introduced new architectures, learning paradigms, and larger pretraining data, leading to impressive performance on tasks such as classification. While previous generations of vision models were shown to lack robustness to factors such as pose, it’s unclear the extent to which this next generation of models are more robust. To study this question, we develop a dataset of more than 7 million images with controlled changes in pose, position, background, lighting, and size. We study not only how robust recent state-of-the-art models are, but also the extent to which models can generalize variation in factors when they’re present during training. We consider a catalog of recent vision models, including vision transformers (ViT), self-supervised models such as masked autoencoders (MAE), and models trained on larger datasets such as CLIP. We find out-of-the-box, even today’s best models are not robust to common changes in pose, size, and background. When some samples varied during training, we found models required a significant portion of diversity to generalize — though eventually robustness did improve. When diversity is only seen for some classes however, we found models did not generalize to other classes, unless the classes were very similar to those seen varying during training. We hope our work will shed further light on the blind spots of SoTA models and spur the development of more robust vision models.
PDF

点此查看论文截图

Explicitly Increasing Input Information Density for Vision Transformers on Small Datasets

Authors:Xiangyu Chen, Ying Qin, Wenju Xu, Andrés M. Bur, Cuncong Zhong, Guanghui Wang

Vision Transformers have attracted a lot of attention recently since the successful implementation of Vision Transformer (ViT) on vision tasks. With vision Transformers, specifically the multi-head self-attention modules, networks can capture long-term dependencies inherently. However, these attention modules normally need to be trained on large datasets, and vision Transformers show inferior performance on small datasets when training from scratch compared with widely dominant backbones like ResNets. Note that the Transformer model was first proposed for natural language processing, which carries denser information than natural images. To boost the performance of vision Transformers on small datasets, this paper proposes to explicitly increase the input information density in the frequency domain. Specifically, we introduce selecting channels by calculating the channel-wise heatmaps in the frequency domain using Discrete Cosine Transform (DCT), reducing the size of input while keeping most information and hence increasing the information density. As a result, 25% fewer channels are kept while better performance is achieved compared with previous work. Extensive experiments demonstrate the effectiveness of the proposed approach on five small-scale datasets, including CIFAR-10/100, SVHN, Flowers-102, and Tiny ImageNet. The accuracy has been boosted up to 17.05% with Swin and Focal Transformers. Codes are available at https://github.com/xiangyu8/DenseVT.
PDF Accepted to NeurIPS workshop (VTTA) 2022

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录