NeRF


2022-09-05 更新

CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural Representations

Authors:Alexandra Carlson, Manikandasriram Srinivasan Ramanagopal, Nathan Tseng, Matthew Johnson-Roberson, Ram Vasudevan, Katherine A. Skinner

Recent advances in neural radiance fields (NeRFs) achieve state-of-the-art novel view synthesis and facilitate dense estimation of scene properties. However, NeRFs often fail for large, unbounded scenes that are captured under very sparse views with the scene content concentrated far away from the camera, as is typical for field robotics applications. In particular, NeRF-style algorithms perform poorly: (1) when there are insufficient views with little pose diversity, (2) when scenes contain saturation and shadows, and (3) when finely sampling large unbounded scenes with fine structures becomes computationally intensive. This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes that are observed from sparse input sensor views. This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively. In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for volumetric rendering in metric space. Through extensive quantitative and qualitative experiments on scenes from the KITTI dataset, this paper demonstrates that the proposed method outperforms state-of-the-art NeRF models on both novel view synthesis and dense depth prediction tasks when trained on sparse input data.
PDF * denotes equal contribution

点此查看论文截图

On Quantizing Implicit Neural Representations

Authors:Cameron Gordon, Shin-Fang Chng, Lachlan MacDonald, Simon Lucey

The role of quantization within implicit/coordinate neural networks is still not fully understood. We note that using a canonical fixed quantization scheme during training produces poor performance at low-rates due to the network weight distributions changing over the course of training. In this work, we show that a non-uniform quantization of neural weights can lead to significant improvements. Specifically, we demonstrate that a clustered quantization enables improved reconstruction. Finally, by characterising a trade-off between quantization and network capacity, we demonstrate that it is possible (while memory inefficient) to reconstruct signals using binary neural networks. We demonstrate our findings experimentally on 2D image reconstruction and 3D radiance fields; and show that simple quantization methods and architecture search can achieve compression of NeRF to less than 16kb with minimal loss in performance (323x smaller than the original NeRF).
PDF 10 pages, 10 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录