图像生成


2024-04-20 更新

OneActor: Consistent Character Generation via Cluster-Conditioned Guidance

Authors:Jiahao Wang, Caixia Yan, Haonan Lin, Weizhan Zhang

Text-to-image diffusion models benefit artists with high-quality image generation. Yet its stochastic nature prevent artists from creating consistent images of the same character. Existing methods try to tackle this challenge and generate consistent content in various ways. However, they either depend on external data or require expensive tuning of the diffusion model. For this issue, we argue that a lightweight but intricate guidance is enough to function. Aiming at this, we lead the way to formalize the objective of consistent generation, derive a clustering-based score function and propose a novel paradigm, OneActor. We design a cluster-conditioned model which incorporates posterior samples to guide the denoising trajectories towards the target cluster. To overcome the overfitting challenge shared by one-shot tuning pipelines, we devise auxiliary components to simultaneously augment the tuning and regulate the inference. This technique is later verified to significantly enhance the content diversity of generated images. Comprehensive experiments show that our method outperforms a variety of baselines with satisfactory character consistency, superior prompt conformity as well as high image quality. And our method is at least 4 times faster than tuning-based baselines. Furthermore, to our best knowledge, we first prove that the semantic space has the same interpolation property as the latent space dose. This property can serve as another promising tool for fine generation control.
PDF

点此查看论文截图

TiNO-Edit: Timestep and Noise Optimization for Robust Diffusion-Based Image Editing

Authors:Sherry X. Chen, Yaron Vaxman, Elad Ben Baruch, David Asulin, Aviad Moreshet, Kuo-Chin Lien, Misha Sra, Pradeep Sen

Despite many attempts to leverage pre-trained text-to-image models (T2I) like Stable Diffusion (SD) for controllable image editing, producing good predictable results remains a challenge. Previous approaches have focused on either fine-tuning pre-trained T2I models on specific datasets to generate certain kinds of images (e.g., with a specific object or person), or on optimizing the weights, text prompts, and/or learning features for each input image in an attempt to coax the image generator to produce the desired result. However, these approaches all have shortcomings and fail to produce good results in a predictable and controllable manner. To address this problem, we present TiNO-Edit, an SD-based method that focuses on optimizing the noise patterns and diffusion timesteps during editing, something previously unexplored in the literature. With this simple change, we are able to generate results that both better align with the original images and reflect the desired result. Furthermore, we propose a set of new loss functions that operate in the latent domain of SD, greatly speeding up the optimization when compared to prior approaches, which operate in the pixel domain. Our method can be easily applied to variations of SD including Textual Inversion and DreamBooth that encode new concepts and incorporate them into the edited results. We present a host of image-editing capabilities enabled by our approach. Our code is publicly available at https://github.com/SherryXTChen/TiNO-Edit.
PDF Conference on Computer Vision and Pattern Recognition (CVPR) 2024

点此查看论文截图

Prompt-Driven Feature Diffusion for Open-World Semi-Supervised Learning

Authors:Marzi Heidari, Hanping Zhang, Yuhong Guo

In this paper, we present a novel approach termed Prompt-Driven Feature Diffusion (PDFD) within a semi-supervised learning framework for Open World Semi-Supervised Learning (OW-SSL). At its core, PDFD deploys an efficient feature-level diffusion model with the guidance of class-specific prompts to support discriminative feature representation learning and feature generation, tackling the challenge of the non-availability of labeled data for unseen classes in OW-SSL. In particular, PDFD utilizes class prototypes as prompts in the diffusion model, leveraging their class-discriminative and semantic generalization ability to condition and guide the diffusion process across all the seen and unseen classes. Furthermore, PDFD incorporates a class-conditional adversarial loss for diffusion model training, ensuring that the features generated via the diffusion process can be discriminatively aligned with the class-conditional features of the real data. Additionally, the class prototypes of the unseen classes are computed using only unlabeled instances with confident predictions within a semi-supervised learning framework. We conduct extensive experiments to evaluate the proposed PDFD. The empirical results show PDFD exhibits remarkable performance enhancements over many state-of-the-art existing methods.
PDF

点此查看论文截图

TextCenGen: Attention-Guided Text-Centric Background Adaptation for Text-to-Image Generation

Authors:Tianyi Liang, Jiangqi Liu, Sicheng Song, Shiqi Jiang, Yifei Huang, Changbo Wang, Chenhui Li

Recent advancements in Text-to-image (T2I) generation have witnessed a shift from adapting text to fixed backgrounds to creating images around text. Traditional approaches are often limited to generate layouts within static images for effective text placement. Our proposed approach, TextCenGen, introduces a dynamic adaptation of the blank region for text-friendly image generation, emphasizing text-centric design and visual harmony generation. Our method employs force-directed attention guidance in T2I models to generate images that strategically reserve whitespace for pre-defined text areas, even for text or icons at the golden ratio. Observing how cross-attention maps affect object placement, we detect and repel conflicting objects using a force-directed graph approach, combined with a Spatial Excluding Cross-Attention Constraint for smooth attention in whitespace areas. As a novel task in graphic design, experiments indicate that TextCenGen outperforms existing methods with more harmonious compositions. Furthermore, our method significantly enhances T2I model outcomes on our specially collected prompt datasets, catering to varied text positions. These results demonstrate the efficacy of TextCenGen in creating more harmonious and integrated text-image compositions.
PDF 7 pages, 7 figures

点此查看论文截图

FreeDiff: Progressive Frequency Truncation for Image Editing with Diffusion Models

Authors:Wei Wu, Qingnan Fan, Shuai Qin, Hong Gu, Ruoyu Zhao, Antoni B. Chan

Precise image editing with text-to-image models has attracted increasing interest due to their remarkable generative capabilities and user-friendly nature. However, such attempts face the pivotal challenge of misalignment between the intended precise editing target regions and the broader area impacted by the guidance in practice. Despite excellent methods leveraging attention mechanisms that have been developed to refine the editing guidance, these approaches necessitate modifications through complex network architecture and are limited to specific editing tasks. In this work, we re-examine the diffusion process and misalignment problem from a frequency perspective, revealing that, due to the power law of natural images and the decaying noise schedule, the denoising network primarily recovers low-frequency image components during the earlier timesteps and thus brings excessive low-frequency signals for editing. Leveraging this insight, we introduce a novel fine-tuning free approach that employs progressive $\textbf{Fre}$qu$\textbf{e}$ncy truncation to refine the guidance of $\textbf{Diff}$usion models for universal editing tasks ($\textbf{FreeDiff}$). Our method achieves comparable results with state-of-the-art methods across a variety of editing tasks and on a diverse set of images, highlighting its potential as a versatile tool in image editing applications.
PDF

点此查看论文截图

Authors:Chao Zhou, Huishuai Zhang, Jiang Bian, Weiming Zhang, Nenghai Yu

This paper addresses the contentious issue of copyright infringement in images generated by text-to-image models, sparking debates among AI developers, content creators, and legal entities. State-of-the-art models create high-quality content without crediting original creators, causing concern in the artistic community. To mitigate this, we propose the \copyright Plug-in Authorization framework, introducing three operations: addition, extraction, and combination. Addition involves training a \copyright plug-in for specific copyright, facilitating proper credit attribution. Extraction allows creators to reclaim copyright from infringing models, and combination enables users to merge different \copyright plug-ins. These operations act as permits, incentivizing fair use and providing flexibility in authorization. We present innovative approaches,”Reverse LoRA” for extraction and “EasyMerge” for seamless combination. Experiments in artist-style replication and cartoon IP recreation demonstrate \copyright plug-ins’ effectiveness, offering a valuable solution for human copyright protection in the age of generative AIs.
PDF 20 pages, 6 figures

点此查看论文截图

StyleBooth: Image Style Editing with Multimodal Instruction

Authors:Zhen Han, Chaojie Mao, Zeyinzi Jiang, Yulin Pan, Jingfeng Zhang

Given an original image, image editing aims to generate an image that align with the provided instruction. The challenges are to accept multimodal inputs as instructions and a scarcity of high-quality training data, including crucial triplets of source/target image pairs and multimodal (text and image) instructions. In this paper, we focus on image style editing and present StyleBooth, a method that proposes a comprehensive framework for image editing and a feasible strategy for building a high-quality style editing dataset. We integrate encoded textual instruction and image exemplar as a unified condition for diffusion model, enabling the editing of original image following multimodal instructions. Furthermore, by iterative style-destyle tuning and editing and usability filtering, the StyleBooth dataset provides content-consistent stylized/plain image pairs in various categories of styles. To show the flexibility of StyleBooth, we conduct experiments on diverse tasks, such as text-based style editing, exemplar-based style editing and compositional style editing. The results demonstrate that the quality and variety of training data significantly enhance the ability to preserve content and improve the overall quality of generated images in editing tasks. Project page can be found at https://ali-vilab.github.io/stylebooth-page/.
PDF

点此查看论文截图

Guided Discrete Diffusion for Electronic Health Record Generation

Authors:Zixiang Chen, Jun Han, Yongqian Li, Yiwen Kou, Eran Halperin, Robert E. Tillman, Quanquan Gu

Electronic health records (EHRs) are a pivotal data source that enables numerous applications in computational medicine, e.g., disease progression prediction, clinical trial design, and health economics and outcomes research. Despite wide usability, their sensitive nature raises privacy and confidentially concerns, which limit potential use cases. To tackle these challenges, we explore the use of generative models to synthesize artificial, yet realistic EHRs. While diffusion-based methods have recently demonstrated state-of-the-art performance in generating other data modalities and overcome the training instability and mode collapse issues that plague previous GAN-based approaches, their applications in EHR generation remain underexplored. The discrete nature of tabular medical code data in EHRs poses challenges for high-quality data generation, especially for continuous diffusion models. To this end, we introduce a novel tabular EHR generation method, EHR-D3PM, which enables both unconditional and conditional generation using the discrete diffusion model. Our experiments demonstrate that EHR-D3PM significantly outperforms existing generative baselines on comprehensive fidelity and utility metrics while maintaining less membership vulnerability risks. Furthermore, we show EHR-D3PM is effective as a data augmentation method and enhances performance on downstream tasks when combined with real data.
PDF 24 pages, 9 figures, 12 tables

点此查看论文截图

AniClipart: Clipart Animation with Text-to-Video Priors

Authors:Ronghuan Wu, Wanchao Su, Kede Ma, Jing Liao

Clipart, a pre-made graphic art form, offers a convenient and efficient way of illustrating visual content. Traditional workflows to convert static clipart images into motion sequences are laborious and time-consuming, involving numerous intricate steps like rigging, key animation and in-betweening. Recent advancements in text-to-video generation hold great potential in resolving this problem. Nevertheless, direct application of text-to-video generation models often struggles to retain the visual identity of clipart images or generate cartoon-style motions, resulting in unsatisfactory animation outcomes. In this paper, we introduce AniClipart, a system that transforms static clipart images into high-quality motion sequences guided by text-to-video priors. To generate cartoon-style and smooth motion, we first define B\’{e}zier curves over keypoints of the clipart image as a form of motion regularization. We then align the motion trajectories of the keypoints with the provided text prompt by optimizing the Video Score Distillation Sampling (VSDS) loss, which encodes adequate knowledge of natural motion within a pretrained text-to-video diffusion model. With a differentiable As-Rigid-As-Possible shape deformation algorithm, our method can be end-to-end optimized while maintaining deformation rigidity. Experimental results show that the proposed AniClipart consistently outperforms existing image-to-video generation models, in terms of text-video alignment, visual identity preservation, and motion consistency. Furthermore, we showcase the versatility of AniClipart by adapting it to generate a broader array of animation formats, such as layered animation, which allows topological changes.
PDF Project Page: https://aniclipart.github.io/

点此查看论文截图

Learning the Domain Specific Inverse NUFFT for Accelerated Spiral MRI using Diffusion Models

Authors:Trevor J. Chan, Chamith S. Rajapakse

Deep learning methods for accelerated MRI achieve state-of-the-art results but largely ignore additional speedups possible with noncartesian sampling trajectories. To address this gap, we created a generative diffusion model-based reconstruction algorithm for multi-coil highly undersampled spiral MRI. This model uses conditioning during training as well as frequency-based guidance to ensure consistency between images and measurements. Evaluated on retrospective data, we show high quality (structural similarity > 0.87) in reconstructed images with ultrafast scan times (0.02 seconds for a 2D image). We use this algorithm to identify a set of optimal variable-density spiral trajectories and show large improvements in image quality compared to conventional reconstruction using the non-uniform fast Fourier transform. By combining efficient spiral sampling trajectories, multicoil imaging, and deep learning reconstruction, these methods could enable the extremely high acceleration factors needed for real-time 3D imaging.
PDF

点此查看论文截图

MedThink: Explaining Medical Visual Question Answering via Multimodal Decision-Making Rationale

Authors:Xiaotang Gai, Chenyi Zhou, Jiaxiang Liu, Yang Feng, Jian Wu, Zuozhu Liu

Medical Visual Question Answering (MedVQA), which offers language responses to image-based medical inquiries, represents a challenging task and significant advancement in healthcare. It assists medical experts to swiftly interpret medical images, thereby enabling faster and more accurate diagnoses. However, the model interpretability and transparency of existing MedVQA solutions are often limited, posing challenges in understanding their decision-making processes. To address this issue, we devise a semi-automated annotation process to streamlining data preparation and build new benchmark MedVQA datasets R-RAD and R-SLAKE. The R-RAD and R-SLAKE datasets provide intermediate medical decision-making rationales generated by multimodal large language models and human annotations for question-answering pairs in existing MedVQA datasets, i.e., VQA-RAD and SLAKE. Moreover, we design a novel framework which finetunes lightweight pretrained generative models by incorporating medical decision-making rationales into the training process. The framework includes three distinct strategies to generate decision outcomes and corresponding rationales, thereby clearly showcasing the medical decision-making process during reasoning. Extensive experiments demonstrate that our method can achieve an accuracy of 83.5% on R-RAD and 86.3% on R-SLAKE, significantly outperforming existing state-of-the-art baselines. Dataset and code will be released.
PDF

点此查看论文截图

G-HOP: Generative Hand-Object Prior for Interaction Reconstruction and Grasp Synthesis

Authors:Yufei Ye, Abhinav Gupta, Kris Kitani, Shubham Tulsiani

We propose G-HOP, a denoising diffusion based generative prior for hand-object interactions that allows modeling both the 3D object and a human hand, conditioned on the object category. To learn a 3D spatial diffusion model that can capture this joint distribution, we represent the human hand via a skeletal distance field to obtain a representation aligned with the (latent) signed distance field for the object. We show that this hand-object prior can then serve as generic guidance to facilitate other tasks like reconstruction from interaction clip and human grasp synthesis. We believe that our model, trained by aggregating seven diverse real-world interaction datasets spanning across 155 categories, represents a first approach that allows jointly generating both hand and object. Our empirical evaluations demonstrate the benefit of this joint prior in video-based reconstruction and human grasp synthesis, outperforming current task-specific baselines. Project website: https://judyye.github.io/ghop-www
PDF accepted to CVPR2024; project page at https://judyye.github.io/ghop-www

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录