点云相关


2024-04-19 更新

Zero-shot detection of buildings in mobile LiDAR using Language Vision Model

Authors:June Moh Goo, Zichao Zeng, Jan Boehm

Recent advances have demonstrated that Language Vision Models (LVMs) surpass the existing State-of-the-Art (SOTA) in two-dimensional (2D) computer vision tasks, motivating attempts to apply LVMs to three-dimensional (3D) data. While LVMs are efficient and effective in addressing various downstream 2D vision tasks without training, they face significant challenges when it comes to point clouds, a representative format for representing 3D data. It is more difficult to extract features from 3D data and there are challenges due to large data sizes and the cost of the collection and labelling, resulting in a notably limited availability of datasets. Moreover, constructing LVMs for point clouds is even more challenging due to the requirements for large amounts of data and training time. To address these issues, our research aims to 1) apply the Grounded SAM through Spherical Projection to transfer 3D to 2D, and 2) experiment with synthetic data to evaluate its effectiveness in bridging the gap between synthetic and real-world data domains. Our approach exhibited high performance with an accuracy of 0.96, an IoU of 0.85, precision of 0.92, recall of 0.91, and an F1 score of 0.92, confirming its potential. However, challenges such as occlusion problems and pixel-level overlaps of multi-label points during spherical image generation remain to be addressed in future studies.
PDF 7 pages, 6 figures, conference

点此查看论文截图

GaitPoint+: A Gait Recognition Network Incorporating Point Cloud Analysis and Recycling

Authors:Huantao Ren, Jiajing Chen, Senem Velipasalar

Gait is a behavioral biometric modality that can be used to recognize individuals by the way they walk from a far distance. Most existing gait recognition approaches rely on either silhouettes or skeletons, while their joint use is underexplored. Features from silhouettes and skeletons can provide complementary information for more robust recognition against appearance changes or pose estimation errors. To exploit the benefits of both silhouette and skeleton features, we propose a new gait recognition network, referred to as the GaitPoint+. Our approach models skeleton key points as a 3D point cloud, and employs a computational complexity-conscious 3D point processing approach to extract skeleton features, which are then combined with silhouette features for improved accuracy. Since silhouette- or CNN-based methods already require considerable amount of computational resources, it is preferable that the key point learning module is faster and more lightweight. We present a detailed analysis of the utilization of every human key point after the use of traditional max-pooling, and show that while elbow and ankle points are used most commonly, many useful points are discarded by max-pooling. Thus, we present a method to recycle some of the discarded points by a Recycling Max-Pooling module, during processing of skeleton point clouds, and achieve further performance improvement. We provide a comprehensive set of experimental results showing that (i) incorporating skeleton features obtained by a point-based 3D point cloud processing approach boosts the performance of three different state-of-the-art silhouette- and CNN-based baselines; (ii) recycling the discarded points increases the accuracy further. Ablation studies are also provided to show the effectiveness and contribution of different components of our approach.
PDF

点此查看论文截图

CMU-Flownet: Exploring Point Cloud Scene Flow Estimation in Occluded Scenario

Authors:Jingze Chen, Junfeng Yao, Qiqin Lin, Lei Li

Occlusions hinder point cloud frame alignment in LiDAR data, a challenge inadequately addressed by scene flow models tested mainly on occlusion-free datasets. Attempts to integrate occlusion handling within networks often suffer accuracy issues due to two main limitations: a) the inadequate use of occlusion information, often merging it with flow estimation without an effective integration strategy, and b) reliance on distance-weighted upsampling that falls short in correcting occlusion-related errors. To address these challenges, we introduce the Correlation Matrix Upsampling Flownet (CMU-Flownet), incorporating an occlusion estimation module within its cost volume layer, alongside an Occlusion-aware Cost Volume (OCV) mechanism. Specifically, we propose an enhanced upsampling approach that expands the sensory field of the sampling process which integrates a Correlation Matrix designed to evaluate point-level similarity. Meanwhile, our model robustly integrates occlusion data within the context of scene flow, deploying this information strategically during the refinement phase of the flow estimation. The efficacy of this approach is demonstrated through subsequent experimental validation. Empirical assessments reveal that CMU-Flownet establishes state-of-the-art performance within the realms of occluded Flyingthings3D and KITTY datasets, surpassing previous methodologies across a majority of evaluated metrics.
PDF 14 pages

点此查看论文截图

Learning SO(3)-Invariant Semantic Correspondence via Local Shape Transform

Authors:Chunghyun Park, Seungwook Sim, Jaesik Park, Minsu Cho

Establishing accurate 3D correspondences between shapes stands as a pivotal challenge with profound implications for computer vision and robotics. However, existing self-supervised methods for this problem assume perfect input shape alignment, restricting their real-world applicability. In this work, we introduce a novel self-supervised Rotation-Invariant 3D correspondence learner with Local Shape Transform, dubbed RIST, that learns to establish dense correspondences between shapes even under challenging intra-class variations and arbitrary orientations. Specifically, RIST learns to dynamically formulate an SO(3)-invariant local shape transform for each point, which maps the SO(3)-equivariant global shape descriptor of the input shape to a local shape descriptor. These local shape descriptors are provided as inputs to our decoder to facilitate point cloud self- and cross-reconstruction. Our proposed self-supervised training pipeline encourages semantically corresponding points from different shapes to be mapped to similar local shape descriptors, enabling RIST to establish dense point-wise correspondences. RIST demonstrates state-of-the-art performances on 3D part label transfer and semantic keypoint transfer given arbitrarily rotated point cloud pairs, outperforming existing methods by significant margins.
PDF Accepted to CVPR 2024

点此查看论文截图

MMCBE: Multi-modality Dataset for Crop Biomass Estimation and Beyond

Authors:Xuesong Li, Zeeshan Hayder, Ali Zia, Connor Cassidy, Shiming Liu, Warwick Stiller, Eric Stone, Warren Conaty, Lars Petersson, Vivien Rolland

Crop biomass, a critical indicator of plant growth, health, and productivity, is invaluable for crop breeding programs and agronomic research. However, the accurate and scalable quantification of crop biomass remains inaccessible due to limitations in existing measurement methods. One of the obstacles impeding the advancement of current crop biomass prediction methodologies is the scarcity of publicly available datasets. Addressing this gap, we introduce a new dataset in this domain, i.e. Multi-modality dataset for crop biomass estimation (MMCBE). Comprising 216 sets of multi-view drone images, coupled with LiDAR point clouds, and hand-labelled ground truth, MMCBE represents the first multi-modality one in the field. This dataset aims to establish benchmark methods for crop biomass quantification and foster the development of vision-based approaches. We have rigorously evaluated state-of-the-art crop biomass estimation methods using MMCBE and ventured into additional potential applications, such as 3D crop reconstruction from drone imagery and novel-view rendering. With this publication, we are making our comprehensive dataset available to the broader community.
PDF 10 pages, 10 figures, 3 tables

点此查看论文截图

VG4D: Vision-Language Model Goes 4D Video Recognition

Authors:Zhichao Deng, Xiangtai Li, Xia Li, Yunhai Tong, Shen Zhao, Mengyuan Liu

Understanding the real world through point cloud video is a crucial aspect of robotics and autonomous driving systems. However, prevailing methods for 4D point cloud recognition have limitations due to sensor resolution, which leads to a lack of detailed information. Recent advances have shown that Vision-Language Models (VLM) pre-trained on web-scale text-image datasets can learn fine-grained visual concepts that can be transferred to various downstream tasks. However, effectively integrating VLM into the domain of 4D point clouds remains an unresolved problem. In this work, we propose the Vision-Language Models Goes 4D (VG4D) framework to transfer VLM knowledge from visual-text pre-trained models to a 4D point cloud network. Our approach involves aligning the 4D encoder’s representation with a VLM to learn a shared visual and text space from training on large-scale image-text pairs. By transferring the knowledge of the VLM to the 4D encoder and combining the VLM, our VG4D achieves improved recognition performance. To enhance the 4D encoder, we modernize the classic dynamic point cloud backbone and propose an improved version of PSTNet, im-PSTNet, which can efficiently model point cloud videos. Experiments demonstrate that our method achieves state-of-the-art performance for action recognition on both the NTU RGB+D 60 dataset and the NTU RGB+D 120 dataset. Code is available at \url{https://github.com/Shark0-0/VG4D}.
PDF ICRA 2024

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录