无监督/半监督/对比学习


2024-04-14 更新

A Universal Knowledge Embedded Contrastive Learning Framework for Hyperspectral Image Classification

Authors:Quanwei Liu, Yanni Dong, Tao Huang, Lefei Zhang, Bo Du

Hyperspectral image (HSI) classification techniques have been intensively studied and a variety of models have been developed. However, these HSI classification models are confined to pocket models and unrealistic ways of datasets partitioning. The former limits the generalization performance of the model and the latter is partitioned leads to inflated model evaluation metrics, which results in plummeting model performance in the real world. Therefore, we propose a universal knowledge embedded contrastive learning framework (KnowCL) for supervised, unsupervised, and semisupervised HSI classification, which largely closes the gap of HSI classification models between pocket models and standard vision backbones. We present a new HSI processing pipeline in conjunction with a range of data transformation and augmentation techniques that provide diverse data representations and realistic data partitioning. The proposed framework based on this pipeline is compatible with all kinds of backbones and can fully exploit labeled and unlabeled samples with expected training time. Furthermore, we design a new loss function, which can adaptively fuse the supervised loss and unsupervised loss, enhancing the learning performance. This proposed new classification paradigm shows great potentials in exploring for HSI classification technology. The code can be accessed at https://github.com/quanweiliu/KnowCL.
PDF

点此查看论文截图

Effective Lymph Nodes Detection in CT Scans Using Location Debiased Query Selection and Contrastive Query Representation in Transformer

Authors:Qinji Yu, Yirui Wang, Ke Yan, Haoshen Li, Dazhou Guo, Li Zhang, Le Lu, Na Shen, Qifeng Wang, Xiaowei Ding, Xianghua Ye, Dakai Jin

Lymph node (LN) assessment is a critical, indispensable yet very challenging task in the routine clinical workflow of radiology and oncology. Accurate LN analysis is essential for cancer diagnosis, staging, and treatment planning. Finding scatteredly distributed, low-contrast clinically relevant LNs in 3D CT is difficult even for experienced physicians under high inter-observer variations. Previous automatic LN detection works typically yield limited recall and high false positives (FPs) due to adjacent anatomies with similar image intensities, shapes, or textures (vessels, muscles, esophagus, etc). In this work, we propose a new LN DEtection TRansformer, named LN-DETR, to achieve more accurate performance. By enhancing the 2D backbone with a multi-scale 2.5D feature fusion to incorporate 3D context explicitly, more importantly, we make two main contributions to improve the representation quality of LN queries. 1) Considering that LN boundaries are often unclear, an IoU prediction head and a location debiased query selection are proposed to select LN queries of higher localization accuracy as the decoder query’s initialization. 2) To reduce FPs, query contrastive learning is employed to explicitly reinforce LN queries towards their best-matched ground-truth queries over unmatched query predictions. Trained and tested on 3D CT scans of 1067 patients (with 10,000+ labeled LNs) via combining seven LN datasets from different body parts (neck, chest, and abdomen) and pathologies/cancers, our method significantly improves the performance of previous leading methods by > 4-5% average recall at the same FP rates in both internal and external testing. We further evaluate on the universal lesion detection task using NIH DeepLesion benchmark, and our method achieves the top performance of 88.46% averaged recall across 0.5 to 4 FPs per image, compared with other leading reported results.
PDF Technical report

点此查看论文截图

Rethinking Diffusion Model for Multi-Contrast MRI Super-Resolution

Authors:Guangyuan Li, Chen Rao, Juncheng Mo, Zhanjie Zhang, Wei Xing, Lei Zhao

Recently, diffusion models (DM) have been applied in magnetic resonance imaging (MRI) super-resolution (SR) reconstruction, exhibiting impressive performance, especially with regard to detailed reconstruction. However, the current DM-based SR reconstruction methods still face the following issues: (1) They require a large number of iterations to reconstruct the final image, which is inefficient and consumes a significant amount of computational resources. (2) The results reconstructed by these methods are often misaligned with the real high-resolution images, leading to remarkable distortion in the reconstructed MR images. To address the aforementioned issues, we propose an efficient diffusion model for multi-contrast MRI SR, named as DiffMSR. Specifically, we apply DM in a highly compact low-dimensional latent space to generate prior knowledge with high-frequency detail information. The highly compact latent space ensures that DM requires only a few simple iterations to produce accurate prior knowledge. In addition, we design the Prior-Guide Large Window Transformer (PLWformer) as the decoder for DM, which can extend the receptive field while fully utilizing the prior knowledge generated by DM to ensure that the reconstructed MR image remains undistorted. Extensive experiments on public and clinical datasets demonstrate that our DiffMSR outperforms state-of-the-art methods.
PDF 14 pages, 12 figures, Accepted by CVPR2024

点此查看论文截图

A Clinical-oriented Multi-level Contrastive Learning Method for Disease Diagnosis in Low-quality Medical Images

Authors:Qingshan Hou, Shuai Cheng, Peng Cao, Jinzhu Yang, Xiaoli Liu, Osmar R. Zaiane, Yih Chung Tham

Representation learning offers a conduit to elucidate distinctive features within the latent space and interpret the deep models. However, the randomness of lesion distribution and the complexity of low-quality factors in medical images pose great challenges for models to extract key lesion features. Disease diagnosis methods guided by contrastive learning (CL) have shown significant advantages in lesion feature representation. Nevertheless, the effectiveness of CL is highly dependent on the quality of the positive and negative sample pairs. In this work, we propose a clinical-oriented multi-level CL framework that aims to enhance the model’s capacity to extract lesion features and discriminate between lesion and low-quality factors, thereby enabling more accurate disease diagnosis from low-quality medical images. Specifically, we first construct multi-level positive and negative pairs to enhance the model’s comprehensive recognition capability of lesion features by integrating information from different levels and qualities of medical images. Moreover, to improve the quality of the learned lesion embeddings, we introduce a dynamic hard sample mining method based on self-paced learning. The proposed CL framework is validated on two public medical image datasets, EyeQ and Chest X-ray, demonstrating superior performance compared to other state-of-the-art disease diagnostic methods.
PDF

点此查看论文截图

Multi-level Graph Subspace Contrastive Learning for Hyperspectral Image Clustering

Authors:Jingxin Wang, Renxiang Guan, Kainan Gao, Zihao Li, Hao Li, Xianju Li, Chang Tang

Hyperspectral image (HSI) clustering is a challenging task due to its high complexity. Despite subspace clustering shows impressive performance for HSI, traditional methods tend to ignore the global-local interaction in HSI data. In this study, we proposed a multi-level graph subspace contrastive learning (MLGSC) for HSI clustering. The model is divided into the following main parts. Graph convolution subspace construction: utilizing spectral and texture feautures to construct two graph convolution views. Local-global graph representation: local graph representations were obtained by step-by-step convolutions and a more representative global graph representation was obtained using an attention-based pooling strategy. Multi-level graph subspace contrastive learning: multi-level contrastive learning was conducted to obtain local-global joint graph representations, to improve the consistency of the positive samples between views, and to obtain more robust graph embeddings. Specifically, graph-level contrastive learning is used to better learn global representations of HSI data. Node-level intra-view and inter-view contrastive learning is designed to learn joint representations of local regions of HSI. The proposed model is evaluated on four popular HSI datasets: Indian Pines, Pavia University, Houston, and Xu Zhou. The overall accuracies are 97.75%, 99.96%, 92.28%, and 95.73%, which significantly outperforms the current state-of-the-art clustering methods.
PDF IJCNN 2024

点此查看论文截图

Contrastive-Based Deep Embeddings for Label Noise-Resilient Histopathology Image Classification

Authors:Lucas Dedieu, Nicolas Nerrienet, Adrien Nivaggioli, Clara Simmat, Marceau Clavel, Arnaud Gauthier, Stéphane Sockeel, Rémy Peyret

Recent advancements in deep learning have proven highly effective in medical image classification, notably within histopathology. However, noisy labels represent a critical challenge in histopathology image classification, where accurate annotations are vital for training robust deep learning models. Indeed, deep neural networks can easily overfit label noise, leading to severe degradations in model performance. While numerous public pathology foundation models have emerged recently, none have evaluated their resilience to label noise. Through thorough empirical analyses across multiple datasets, we exhibit the label noise resilience property of embeddings extracted from foundation models trained in a self-supervised contrastive manner. We demonstrate that training with such embeddings substantially enhances label noise robustness when compared to non-contrastive-based ones as well as commonly used noise-resilient methods. Our results unequivocally underline the superiority of contrastive learning in effectively mitigating the label noise challenge. Code is publicly available at https://github.com/LucasDedieu/NoiseResilientHistopathology.
PDF 16 pages

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录