场景文本检测识别


2024-04-14 更新

JSTR: Judgment Improves Scene Text Recognition

Authors:Masato Fujitake

In this paper, we present a method for enhancing the accuracy of scene text recognition tasks by judging whether the image and text match each other. While previous studies focused on generating the recognition results from input images, our approach also considers the model’s misrecognition results to understand its error tendencies, thus improving the text recognition pipeline. This method boosts text recognition accuracy by providing explicit feedback on the data that the model is likely to misrecognize by predicting correct or incorrect between the image and text. The experimental results on publicly available datasets demonstrate that our proposed method outperforms the baseline and state-of-the-art methods in scene text recognition.
PDF IntelliSys 2024

点此查看论文截图

DreamScene360: Unconstrained Text-to-3D Scene Generation with Panoramic Gaussian Splatting

Authors:Shijie Zhou, Zhiwen Fan, Dejia Xu, Haoran Chang, Pradyumna Chari, Tejas Bharadwaj, Suya You, Zhangyang Wang, Achuta Kadambi

The increasing demand for virtual reality applications has highlighted the significance of crafting immersive 3D assets. We present a text-to-3D 360$^{\circ}$ scene generation pipeline that facilitates the creation of comprehensive 360$^{\circ}$ scenes for in-the-wild environments in a matter of minutes. Our approach utilizes the generative power of a 2D diffusion model and prompt self-refinement to create a high-quality and globally coherent panoramic image. This image acts as a preliminary “flat” (2D) scene representation. Subsequently, it is lifted into 3D Gaussians, employing splatting techniques to enable real-time exploration. To produce consistent 3D geometry, our pipeline constructs a spatially coherent structure by aligning the 2D monocular depth into a globally optimized point cloud. This point cloud serves as the initial state for the centroids of 3D Gaussians. In order to address invisible issues inherent in single-view inputs, we impose semantic and geometric constraints on both synthesized and input camera views as regularizations. These guide the optimization of Gaussians, aiding in the reconstruction of unseen regions. In summary, our method offers a globally consistent 3D scene within a 360$^{\circ}$ perspective, providing an enhanced immersive experience over existing techniques. Project website at: http://dreamscene360.github.io/
PDF

点此查看论文截图

RealmDreamer: Text-Driven 3D Scene Generation with Inpainting and Depth Diffusion

Authors:Jaidev Shriram, Alex Trevithick, Lingjie Liu, Ravi Ramamoorthi

We introduce RealmDreamer, a technique for generation of general forward-facing 3D scenes from text descriptions. Our technique optimizes a 3D Gaussian Splatting representation to match complex text prompts. We initialize these splats by utilizing the state-of-the-art text-to-image generators, lifting their samples into 3D, and computing the occlusion volume. We then optimize this representation across multiple views as a 3D inpainting task with image-conditional diffusion models. To learn correct geometric structure, we incorporate a depth diffusion model by conditioning on the samples from the inpainting model, giving rich geometric structure. Finally, we finetune the model using sharpened samples from image generators. Notably, our technique does not require video or multi-view data and can synthesize a variety of high-quality 3D scenes in different styles, consisting of multiple objects. Its generality additionally allows 3D synthesis from a single image.
PDF Project Page: https://realmdreamer.github.io/

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录