2024-04-03 更新

Bridging Different Language Models and Generative Vision Models for Text-to-Image Generation

Authors:Shihao Zhao, Shaozhe Hao, Bojia Zi, Huaizhe Xu, Kwan-Yee K. Wong

Text-to-image generation has made significant advancements with the introduction of text-to-image diffusion models. These models typically consist of a language model that interprets user prompts and a vision model that generates corresponding images. As language and vision models continue to progress in their respective domains, there is a great potential in exploring the replacement of components in text-to-image diffusion models with more advanced counterparts. A broader research objective would therefore be to investigate the integration of any two unrelated language and generative vision models for text-to-image generation. In this paper, we explore this objective and propose LaVi-Bridge, a pipeline that enables the integration of diverse pre-trained language models and generative vision models for text-to-image generation. By leveraging LoRA and adapters, LaVi-Bridge offers a flexible and plug-and-play approach without requiring modifications to the original weights of the language and vision models. Our pipeline is compatible with various language models and generative vision models, accommodating different structures. Within this framework, we demonstrate that incorporating superior modules, such as more advanced language models or generative vision models, results in notable improvements in capabilities like text alignment or image quality. Extensive evaluations have been conducted to verify the effectiveness of LaVi-Bridge. Code is available at https://github.com/ShihaoZhaoZSH/LaVi-Bridge.


MineDreamer: Learning to Follow Instructions via Chain-of-Imagination for Simulated-World Control

Authors:Enshen Zhou, Yiran Qin, Zhenfei Yin, Yuzhou Huang, Ruimao Zhang, Lu Sheng, Yu Qiao, Jing Shao

It is a long-lasting goal to design a generalist-embodied agent that can follow diverse instructions in human-like ways. However, existing approaches often fail to steadily follow instructions due to difficulties in understanding abstract and sequential natural language instructions. To this end, we introduce MineDreamer, an open-ended embodied agent built upon the challenging Minecraft simulator with an innovative paradigm that enhances instruction-following ability in low-level control signal generation. Specifically, MineDreamer is developed on top of recent advances in Multimodal Large Language Models (MLLMs) and diffusion models, and we employ a Chain-of-Imagination (CoI) mechanism to envision the step-by-step process of executing instructions and translating imaginations into more precise visual prompts tailored to the current state; subsequently, the agent generates keyboard-and-mouse actions to efficiently achieve these imaginations, steadily following the instructions at each step. Extensive experiments demonstrate that MineDreamer follows single and multi-step instructions steadily, significantly outperforming the best generalist agent baseline and nearly doubling its performance. Moreover, qualitative analysis of the agent’s imaginative ability reveals its generalization and comprehension of the open world.
PDF Project page: https://sites.google.com/view/minedreamer/main


Comp4D: LLM-Guided Compositional 4D Scene Generation

Authors:Dejia Xu, Hanwen Liang, Neel P. Bhatt, Hezhen Hu, Hanxue Liang, Konstantinos N. Plataniotis, Zhangyang Wang

Recent advancements in diffusion models for 2D and 3D content creation have sparked a surge of interest in generating 4D content. However, the scarcity of 3D scene datasets constrains current methodologies to primarily object-centric generation. To overcome this limitation, we present Comp4D, a novel framework for Compositional 4D Generation. Unlike conventional methods that generate a singular 4D representation of the entire scene, Comp4D innovatively constructs each 4D object within the scene separately. Utilizing Large Language Models (LLMs), the framework begins by decomposing an input text prompt into distinct entities and maps out their trajectories. It then constructs the compositional 4D scene by accurately positioning these objects along their designated paths. To refine the scene, our method employs a compositional score distillation technique guided by the pre-defined trajectories, utilizing pre-trained diffusion models across text-to-image, text-to-video, and text-to-3D domains. Extensive experiments demonstrate our outstanding 4D content creation capability compared to prior arts, showcasing superior visual quality, motion fidelity, and enhanced object interactions.
PDF Project page: https://vita-group.github.io/Comp4D/


Language Rectified Flow: Advancing Diffusion Language Generation with Probabilistic Flows

Authors:Shujian Zhang, Lemeng Wu, Chengyue Gong, Xingchao Liu

Recent works have demonstrated success in controlling sentence attributes ($e.g.$, sentiment) and structure ($e.g.$, syntactic structure) based on the diffusion language model. A key component that drives theimpressive performance for generating high-quality samples from noise is iteratively denoise for thousands of steps. While beneficial, the complexity of starting from the noise and the learning steps has limited its implementation to many NLP real-world applications. This paper proposes Language Rectified Flow ({\ours}). Our method is based on the reformulation of the standard probabilistic flow models. Language rectified flow learns (neural) ordinary differential equation models to transport between the source distribution and the target distribution, hence providing a unified and effective solution to generative modeling and domain transfer. From the source distribution, our language rectified flow yields fast simulation and effectively decreases the inference time. Experiments on three challenging fine-grained control tasks and multiple high-quality text editing show that our method consistently outperforms its baselines. Extensive experiments and ablation studies demonstrate that our method can be general, effective, and beneficial for many NLP tasks.
PDF Accepted to NAACL 2024


Unknown Prompt, the only Lacuna: Unveiling CLIP’s Potential for Open Domain Generalization

Authors:Mainak Singha, Ankit Jha, Shirsha Bose, Ashwin Nair, Moloud Abdar, Biplab Banerjee

We delve into Open Domain Generalization (ODG), marked by domain and category shifts between training’s labeled source and testing’s unlabeled target domains. Existing solutions to ODG face limitations due to constrained generalizations of traditional CNN backbones and errors in detecting target open samples in the absence of prior knowledge. Addressing these pitfalls, we introduce ODG-CLIP, harnessing the semantic prowess of the vision-language model, CLIP. Our framework brings forth three primary innovations: Firstly, distinct from prevailing paradigms, we conceptualize ODG as a multi-class classification challenge encompassing both known and novel categories. Central to our approach is modeling a unique prompt tailored for detecting unknown class samples, and to train this, we employ a readily accessible stable diffusion model, elegantly generating proxy images for the open class. Secondly, aiming for domain-tailored classification (prompt) weights while ensuring a balance of precision and simplicity, we devise a novel visual stylecentric prompt learning mechanism. Finally, we infuse images with class-discriminative knowledge derived from the prompt space to augment the fidelity of CLIP’s visual embeddings. We introduce a novel objective to safeguard the continuity of this infused semantic intel across domains, especially for the shared classes. Through rigorous testing on diverse datasets, covering closed and open-set DG contexts, ODG-CLIP demonstrates clear supremacy, consistently outpacing peers with performance boosts between 8%-16%. Code will be available at https://github.com/mainaksingha01/ODG-CLIP.
PDF Accepted in CVPR 2024


Bi-LORA: A Vision-Language Approach for Synthetic Image Detection

Authors:Mamadou Keita, Wassim Hamidouche, Hessen Bougueffa Eutamene, Abdenour Hadid, Abdelmalik Taleb-Ahmed

Advancements in deep image synthesis techniques, such as generative adversarial networks (GANs) and diffusion models (DMs), have ushered in an era of generating highly realistic images. While this technological progress has captured significant interest, it has also raised concerns about the potential difficulty in distinguishing real images from their synthetic counterparts. This paper takes inspiration from the potent convergence capabilities between vision and language, coupled with the zero-shot nature of vision-language models (VLMs). We introduce an innovative method called Bi-LORA that leverages VLMs, combined with low-rank adaptation (LORA) tuning techniques, to enhance the precision of synthetic image detection for unseen model-generated images. The pivotal conceptual shift in our methodology revolves around reframing binary classification as an image captioning task, leveraging the distinctive capabilities of cutting-edge VLM, notably bootstrapping language image pre-training (BLIP2). Rigorous and comprehensive experiments are conducted to validate the effectiveness of our proposed approach, particularly in detecting unseen diffusion-generated images from unknown diffusion-based generative models during training, showcasing robustness to noise, and demonstrating generalization capabilities to GANs. The obtained results showcase an impressive average accuracy of 93.41% in synthetic image detection on unseen generation models. The code and models associated with this research can be publicly accessed at https://github.com/Mamadou-Keita/VLM-DETECT.


2024-04-03 更新

MultiParaDetox: Extending Text Detoxification with Parallel Data to New Languages

Authors:Daryna Dementieva, Nikolay Babakov, Alexander Panchenko

Text detoxification is a textual style transfer (TST) task where a text is paraphrased from a toxic surface form, e.g. featuring rude words, to the neutral register. Recently, text detoxification methods found their applications in various task such as detoxification of Large Language Models (LLMs) (Leong et al., 2023; He et al., 2024; Tang et al., 2023) and toxic speech combating in social networks (Deng et al., 2023; Mun et al., 2023; Agarwal et al., 2023). All these applications are extremely important to ensure safe communication in modern digital worlds. However, the previous approaches for parallel text detoxification corpora collection — ParaDetox (Logacheva et al., 2022) and APPADIA (Atwell et al., 2022) — were explored only in monolingual setup. In this work, we aim to extend ParaDetox pipeline to multiple languages presenting MultiParaDetox to automate parallel detoxification corpus collection for potentially any language. Then, we experiment with different text detoxification models — from unsupervised baselines to LLMs and fine-tuned models on the presented parallel corpora — showing the great benefit of parallel corpus presence to obtain state-of-the-art text detoxification models for any language.
PDF Accepted to NAACL2024


A Survey on Large Language Model-Based Game Agents

Authors:Sihao Hu, Tiansheng Huang, Fatih Ilhan, Selim Tekin, Gaowen Liu, Ramana Kompella, Ling Liu

The development of game agents holds a critical role in advancing towards Artificial General Intelligence (AGI). The progress of LLMs and their multimodal counterparts (MLLMs) offers an unprecedented opportunity to evolve and empower game agents with human-like decision-making capabilities in complex computer game environments. This paper provides a comprehensive overview of LLM-based game agents from a holistic viewpoint. First, we introduce the conceptual architecture of LLM-based game agents, centered around six essential functional components: perception, memory, thinking, role-playing, action, and learning. Second, we survey existing representative LLM-based game agents documented in the literature with respect to methodologies and adaptation agility across six genres of games, including adventure, communication, competition, cooperation, simulation, and crafting & exploration games. Finally, we present an outlook of future research and development directions in this burgeoning field. A curated list of relevant papers is maintained and made accessible at: https://github.com/git-disl/awesome-LLM-game-agent-papers.


Advancing LLM Reasoning Generalists with Preference Trees

Authors:Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen, Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, Maosong Sun

We introduce Eurus, a suite of large language models (LLMs) optimized for reasoning. Finetuned from Mistral-7B and CodeLlama-70B, Eurus models achieve state-of-the-art results among open-source models on a diverse set of benchmarks covering mathematics, code generation, and logical reasoning problems. Notably, Eurus-70B beats GPT-3.5 Turbo in reasoning through a comprehensive benchmarking across 12 tests covering five tasks, and achieves a 33.3% pass@1 accuracy on LeetCode and 32.6% on TheoremQA, two challenging benchmarks, substantially outperforming existing open-source models by margins more than 13.3%. The strong performance of Eurus can be primarily attributed to UltraInteract, our newly-curated large-scale, high-quality alignment dataset specifically designed for complex reasoning tasks. UltraInteract can be used in both supervised fine-tuning and preference learning. For each instruction, it includes a preference tree consisting of (1) reasoning chains with diverse planning strategies in a unified format, (2) multi-turn interaction trajectories with the environment and the critique, and (3) pairwise data to facilitate preference learning. UltraInteract allows us to conduct an in-depth exploration of preference learning for reasoning tasks. Our investigation reveals that some well-established preference learning algorithms may be less suitable for reasoning tasks compared to their effectiveness in general conversations. Inspired by this, we derive a novel reward modeling objective which, together with UltraInteract, leads to a strong reward model.
PDF Models and data are available at https://github.com/OpenBMB/Eurus


CameraCtrl: Enabling Camera Control for Text-to-Video Generation

Authors:Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, Ceyuan Yang

Controllability plays a crucial role in video generation since it allows users to create desired content. However, existing models largely overlooked the precise control of camera pose that serves as a cinematic language to express deeper narrative nuances. To alleviate this issue, we introduce CameraCtrl, enabling accurate camera pose control for text-to-video(T2V) models. After precisely parameterizing the camera trajectory, a plug-and-play camera module is then trained on a T2V model, leaving others untouched. Additionally, a comprehensive study on the effect of various datasets is also conducted, suggesting that videos with diverse camera distribution and similar appearances indeed enhance controllability and generalization. Experimental results demonstrate the effectiveness of CameraCtrl in achieving precise and domain-adaptive camera control, marking a step forward in the pursuit of dynamic and customized video storytelling from textual and camera pose inputs. Our project website is at: https://hehao13.github.io/projects-CameraCtrl/.
PDF Project page: https://hehao13.github.io/projects-CameraCtrl/ Code: https://github.com/hehao13/CameraCtrl


CLAPNQ: Cohesive Long-form Answers from Passages in Natural Questions for RAG systems

Authors:Sara Rosenthal, Avirup Sil, Radu Florian, Salim Roukos

Retrieval Augmented Generation (RAG) has become a popular application for large language models. It is preferable that successful RAG systems provide accurate answers that are supported by being grounded in a passage without any hallucinations. While considerable work is required for building a full RAG pipeline, being able to benchmark performance is also necessary. We present ClapNQ, a benchmark Long-form Question Answering dataset for the full RAG pipeline. ClapNQ includes long answers with grounded gold passages from Natural Questions (NQ) and a corpus to perform either retrieval, generation, or the full RAG pipeline. The ClapNQ answers are concise, 3x smaller than the full passage, and cohesive, with multiple pieces of the passage that are not contiguous. RAG models must adapt to these properties to be successful at ClapNQ. We present baseline experiments and analysis for ClapNQ that highlight areas where there is still significant room for improvement in grounded RAG. CLAPNQ is publicly available at https://github.com/primeqa/clapnq
PDF 25 pages


Pre-trained Vision and Language Transformers Are Few-Shot Incremental Learners

Authors:Keon-Hee Park, Kyungwoo Song, Gyeong-Moon Park

Few-Shot Class Incremental Learning (FSCIL) is a task that requires a model to learn new classes incrementally without forgetting when only a few samples for each class are given. FSCIL encounters two significant challenges: catastrophic forgetting and overfitting, and these challenges have driven prior studies to primarily rely on shallow models, such as ResNet-18. Even though their limited capacity can mitigate both forgetting and overfitting issues, it leads to inadequate knowledge transfer during few-shot incremental sessions. In this paper, we argue that large models such as vision and language transformers pre-trained on large datasets can be excellent few-shot incremental learners. To this end, we propose a novel FSCIL framework called PriViLege, Pre-trained Vision and Language transformers with prompting functions and knowledge distillation. Our framework effectively addresses the challenges of catastrophic forgetting and overfitting in large models through new pre-trained knowledge tuning (PKT) and two losses: entropy-based divergence loss and semantic knowledge distillation loss. Experimental results show that the proposed PriViLege significantly outperforms the existing state-of-the-art methods with a large margin, e.g., +9.38% in CUB200, +20.58% in CIFAR-100, and +13.36% in miniImageNet. Our implementation code is available at https://github.com/KHU-AGI/PriViLege.
PDF Accepted by CVPR 2024


ViTamin: Designing Scalable Vision Models in the Vision-Language Era

Authors:Jienneg Chen, Qihang Yu, Xiaohui Shen, Alan Yuille, Liang-Chieh Chen

Recent breakthroughs in vision-language models (VLMs) start a new page in the vision community. The VLMs provide stronger and more generalizable feature embeddings compared to those from ImageNet-pretrained models, thanks to the training on the large-scale Internet image-text pairs. However, despite the amazing achievement from the VLMs, vanilla Vision Transformers (ViTs) remain the default choice for the image encoder. Although pure transformer proves its effectiveness in the text encoding area, it remains questionable whether it is also the case for image encoding, especially considering that various types of networks are proposed on the ImageNet benchmark, which, unfortunately, are rarely studied in VLMs. Due to small data/model scale, the original conclusions of model design on ImageNet can be limited and biased. In this paper, we aim at building an evaluation protocol of vision models in the vision-language era under the contrastive language-image pretraining (CLIP) framework. We provide a comprehensive way to benchmark different vision models, covering their zero-shot performance and scalability in both model and training data sizes. To this end, we introduce ViTamin, a new vision models tailored for VLMs. ViTamin-L significantly outperforms ViT-L by 2.0% ImageNet zero-shot accuracy, when using the same publicly available DataComp-1B dataset and the same OpenCLIP training scheme. ViTamin-L presents promising results on 60 diverse benchmarks, including classification, retrieval, open-vocabulary detection and segmentation, and large multi-modal models. When further scaling up the model size, our ViTamin-XL with only 436M parameters attains 82.9% ImageNet zero-shot accuracy, surpassing 82.0% achieved by EVA-E that has ten times more parameters (4.4B).
PDF CVPR 2024; https://github.com/Beckschen/ViTamin


Iterated Learning Improves Compositionality in Large Vision-Language Models

Authors:Chenhao Zheng, Jieyu Zhang, Aniruddha Kembhavi, Ranjay Krishna

A fundamental characteristic common to both human vision and natural language is their compositional nature. Yet, despite the performance gains contributed by large vision and language pretraining, recent investigations find that most-if not all-our state-of-the-art vision-language models struggle at compositionality. They are unable to distinguish between images of “ a girl in white facing a man in black” and “a girl in black facing a man in white”. Moreover, prior work suggests that compositionality doesn’t arise with scale: larger model sizes or training data don’t help. This paper develops a new iterated training algorithm that incentivizes compositionality. We draw on decades of cognitive science research that identifies cultural transmission-the need to teach a new generation-as a necessary inductive prior that incentivizes humans to develop compositional languages. Specifically, we reframe vision-language contrastive learning as the Lewis Signaling Game between a vision agent and a language agent, and operationalize cultural transmission by iteratively resetting one of the agent’s weights during training. After every iteration, this training paradigm induces representations that become “easier to learn”, a property of compositional languages: e.g. our model trained on CC3M and CC12M improves standard CLIP by 4.7%, 4.0% respectfully in the SugarCrepe benchmark.


Segment Any 3D Object with Language

Authors:Seungjun Lee, Yuyang Zhao, Gim Hee Lee

In this paper, we investigate Open-Vocabulary 3D Instance Segmentation (OV-3DIS) with free-form language instructions. Earlier works that rely on only annotated base categories for training suffer from limited generalization to unseen novel categories. Recent works mitigate poor generalizability to novel categories by generating class-agnostic masks or projecting generalized masks from 2D to 3D, but disregard semantic or geometry information, leading to sub-optimal performance. Instead, generating generalizable but semantic-related masks directly from 3D point clouds would result in superior outcomes. In this paper, we introduce Segment any 3D Object with LanguagE (SOLE), which is a semantic and geometric-aware visual-language learning framework with strong generalizability by generating semantic-related masks directly from 3D point clouds. Specifically, we propose a multimodal fusion network to incorporate multimodal semantics in both backbone and decoder. In addition, to align the 3D segmentation model with various language instructions and enhance the mask quality, we introduce three types of multimodal associations as supervision. Our SOLE outperforms previous methods by a large margin on ScanNetv2, ScanNet200, and Replica benchmarks, and the results are even close to the fully-supervised counterpart despite the absence of class annotations in the training. Furthermore, extensive qualitative results demonstrate the versatility of our SOLE to language instructions.
PDF Project Page: https://cvrp-sole.github.io


文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !