2024-04-01 更新

Exploring Pathological Speech Quality Assessment with ASR-Powered Wav2Vec2 in Data-Scarce Context

Authors:Tuan Nguyen, Corinne Fredouille, Alain Ghio, Mathieu Balaguer, Virginie Woisard

Automatic speech quality assessment has raised more attention as an alternative or support to traditional perceptual clinical evaluation. However, most research so far only gains good results on simple tasks such as binary classification, largely due to data scarcity. To deal with this challenge, current works tend to segment patients’ audio files into many samples to augment the datasets. Nevertheless, this approach has limitations, as it indirectly relates overall audio scores to individual segments. This paper introduces a novel approach where the system learns at the audio level instead of segments despite data scarcity. This paper proposes to use the pre-trained Wav2Vec2 architecture for both SSL, and ASR as feature extractor in speech assessment. Carried out on the HNC dataset, our ASR-driven approach established a new baseline compared with other approaches, obtaining average $MSE=0.73$ and $MSE=1.15$ for the prediction of intelligibility and severity scores respectively, using only 95 training samples. It shows that the ASR based Wav2Vec2 model brings the best results and may indicate a strong correlation between ASR and speech quality assessment. We also measure its ability on variable segment durations and speech content, exploring factors influencing its decision.
PDF Accepted at LREC-COLING 2024


Unleashing the Potential of Large Language Models for Predictive Tabular Tasks in Data Science

Authors:Yazheng Yang, Yuqi Wang, Sankalok Sen, Lei Li, Qi Liu

In the domain of data science, the predictive tasks of classification, regression, and imputation of missing values are commonly encountered challenges associated with tabular data. This research endeavors to apply Large Language Models (LLMs) towards addressing these predictive tasks. Despite their proficiency in comprehending natural language, LLMs fall short in dealing with structured tabular data. This limitation stems from their lacking exposure to the intricacies of tabular data during their foundational training. Our research aims to mitigate this gap by compiling a comprehensive corpus of tables annotated with instructions and executing large-scale training of Llama-2 on this enriched dataset. Furthermore, we investigate the practical application of applying the trained model to zero-shot prediction, few-shot prediction, and in-context learning scenarios. Through extensive experiments, our methodology has shown significant improvements over existing benchmarks. These advancements highlight the efficacy of tailoring LLM training to solve table-related problems in data science, thereby establishing a new benchmark in the utilization of LLMs for enhancing tabular intelligence.
PDF 10 pages


H2RSVLM: Towards Helpful and Honest Remote Sensing Large Vision Language Model

Authors:Chao Pang, Jiang Wu, Jiayu Li, Yi Liu, Jiaxing Sun, Weijia Li, Xingxing Weng, Shuai Wang, Litong Feng, Gui-Song Xia, Conghui He

The generic large Vision-Language Models (VLMs) is rapidly developing, but still perform poorly in Remote Sensing (RS) domain, which is due to the unique and specialized nature of RS imagery and the comparatively limited spatial perception of current VLMs. Existing Remote Sensing specific Vision Language Models (RSVLMs) still have considerable potential for improvement, primarily owing to the lack of large-scale, high-quality RS vision-language datasets. We constructed HqDC-1.4M, the large scale High quality and Detailed Captions for RS images, containing 1.4 million image-caption pairs, which not only enhance the RSVLM’s understanding of RS images but also significantly improve the model’s spatial perception abilities, such as localization and counting, thereby increasing the helpfulness of the RSVLM. Moreover, to address the inevitable “hallucination” problem in RSVLM, we developed RSSA, the first dataset aimed at enhancing the Self-Awareness capability of RSVLMs. By incorporating a variety of unanswerable questions into typical RS visual question-answering tasks, RSSA effectively improves the truthfulness and reduces the hallucinations of the model’s outputs, thereby enhancing the honesty of the RSVLM. Based on these datasets, we proposed the H2RSVLM, the Helpful and Honest Remote Sensing Vision Language Model. H2RSVLM has achieved outstanding performance on multiple RS public datasets and is capable of recognizing and refusing to answer the unanswerable questions, effectively mitigating the incorrect generations. We will release the code, data and model weights at https://github.com/opendatalab/H2RSVLM .
PDF Equal contribution: Chao Pang, Jiang Wu; Corresponding author: Gui-Song Xia, Conghui He


Latxa: An Open Language Model and Evaluation Suite for Basque

Authors:Julen Etxaniz, Oscar Sainz, Naiara Perez, Itziar Aldabe, German Rigau, Eneko Agirre, Aitor Ormazabal, Mikel Artetxe, Aitor Soroa

We introduce Latxa, a family of large language models for Basque ranging from 7 to 70 billion parameters. Latxa is based on Llama 2, which we continue pretraining on a new Basque corpus comprising 4.3M documents and 4.2B tokens. Addressing the scarcity of high-quality benchmarks for Basque, we further introduce 4 multiple choice evaluation datasets: EusProficiency, comprising 5,169 questions from official language proficiency exams; EusReading, comprising 352 reading comprehension questions; EusTrivia, comprising 1,715 trivia questions from 5 knowledge areas; and EusExams, comprising 16,774 questions from public examinations. In our extensive evaluation, Latxa outperforms all previous open models we compare to by a large margin. In addition, it is competitive with GPT-4 Turbo in language proficiency and understanding, despite lagging behind in reading comprehension and knowledge-intensive tasks. Both the Latxa family of models, as well as our new pretraining corpora and evaluation datasets, are publicly available under open licenses at https://github.com/hitz-zentroa/latxa. Our suite enables reproducible research on methods to build LLMs for low-resource languages.


Draw-and-Understand: Leveraging Visual Prompts to Enable MLLMs to Comprehend What You Want

Authors:Weifeng Lin, Xinyu Wei, Ruichuan An, Peng Gao, Bocheng Zou, Yulin Luo, Siyuan Huang, Shanghang Zhang, Hongsheng Li

The interaction between humans and artificial intelligence (AI) is a crucial factor that reflects the effectiveness of multimodal large language models (MLLMs). However, current MLLMs primarily focus on image-level comprehension and limit interaction to textual instructions, thereby constraining their flexibility in usage and depth of response. In this paper, we introduce the Draw-and-Understand project: a new model, a multi-domain dataset, and a challenging benchmark for visual prompting. Specifically, we propose SPHINX-V, a new end-to-end trained Multimodal Large Language Model (MLLM) that connects a vision encoder, a visual prompt encoder and an LLM for various visual prompts (points, bounding boxes, and free-form shape) and language understanding. To advance visual prompting research for MLLMs, we introduce MDVP-Data and MDVP-Bench. MDVP-Data features a multi-domain dataset containing 1.6M unique image-visual prompt-text instruction-following samples, including natural images, document images, OCR images, mobile screenshots, web screenshots, and multi-panel images. Furthermore, we present MDVP-Bench, a comprehensive and challenging benchmark to assess a model’s capability in understanding visual prompting instructions. Our experiments demonstrate SPHINX-V’s impressive multimodal interaction capabilities through visual prompting, revealing significant improvements in detailed pixel-level description and question-answering abilities.
PDF 16 pages, 7 figures


LUQ: Long-text Uncertainty Quantification for LLMs

Authors:Caiqi Zhang, Fangyu Liu, Marco Basaldella, Nigel Collier

Large Language Models (LLMs) have demonstrated remarkable capability in a variety of NLP tasks. Despite their effectiveness, these models are prone to generate nonfactual content. Uncertainty Quantification (UQ) is pivotal in enhancing our understanding of a model’s confidence in its generated content, thereby aiding in the mitigation of nonfactual outputs. Existing research on UQ predominantly targets short text generation, typically yielding brief, word-limited responses. However, real-world applications frequently necessitate much longer responses. Our study first highlights the limitations of current UQ methods in handling long text generation. We then introduce \textsc{Luq}, a novel sampling-based UQ approach specifically designed for long text. Our findings reveal that \textsc{Luq} outperforms existing baseline methods in correlating with the model’s factuality scores (negative coefficient of -0.85 observed for Gemini Pro). With \textsc{Luq} as the tool for UQ, we investigate behavior patterns of several popular LLMs’ response confidence spectrum and how that interplays with the response’ factuality. We identify that LLMs lack confidence in generating long text for rare facts and a factually strong model (i.e. GPT-4) tends to reject questions it is not sure about. To further improve the factual accuracy of LLM responses, we propose a method called \textsc{Luq-Ensemble} that ensembles responses from multiple models and selects the response with the least uncertainty. The ensembling method greatly improves the response factuality upon the best standalone LLM.


LayerNorm: A key component in parameter-efficient fine-tuning

Authors:Taha ValizadehAslani, Hualou Liang

Fine-tuning a pre-trained model, such as Bidirectional Encoder Representations from Transformers (BERT), has been proven to be an effective method for solving many natural language processing (NLP) tasks. However, due to the large number of parameters in many state-of-the-art NLP models, including BERT, the process of fine-tuning is computationally expensive. One attractive solution to this issue is parameter-efficient fine-tuning, which involves modifying only a minimal segment of the model while keeping the remainder unchanged. Yet, it remains unclear which segment of the BERT model is crucial for fine-tuning. In this paper, we first analyze different components in the BERT model to pinpoint which one undergoes the most significant changes after fine-tuning. We find that output LayerNorm changes more than any other components when fine-tuned for different General Language Understanding Evaluation (GLUE) tasks. Then we show that only fine-tuning the LayerNorm can reach comparable, or in some cases better, performance to full fine-tuning and other parameter-efficient fine-tuning methods. Moreover, we use Fisher information to determine the most critical subset of LayerNorm and demonstrate that many NLP tasks in the GLUE benchmark can be solved by fine-tuning only a small portion of LayerNorm with negligible performance degradation.


Learn “No” to Say “Yes” Better: Improving Vision-Language Models via Negations

Authors:Jaisidh Singh, Ishaan Shrivastava, Mayank Vatsa, Richa Singh, Aparna Bharati

Existing vision-language models (VLMs) treat text descriptions as a unit, confusing individual concepts in a prompt and impairing visual semantic matching and reasoning. An important aspect of reasoning in logic and language is negations. This paper highlights the limitations of popular VLMs such as CLIP, at understanding the implications of negations, i.e., the effect of the word “not” in a given prompt. To enable evaluation of VLMs on fluent prompts with negations, we present CC-Neg, a dataset containing 228,246 images, true captions and their corresponding negated captions. Using CC-Neg along with modifications to the contrastive loss of CLIP, our proposed CoN-CLIP framework, has an improved understanding of negations. This training paradigm improves CoN-CLIP’s ability to encode semantics reliably, resulting in 3.85% average gain in top-1 accuracy for zero-shot image classification across 8 datasets. Further, CoN-CLIP outperforms CLIP on challenging compositionality benchmarks such as SugarCREPE by 4.4%, showcasing emergent compositional understanding of objects, relations, and attributes in text. Overall, our work addresses a crucial limitation of VLMs by introducing a dataset and framework that strengthens semantic associations between images and text, demonstrating improved large-scale foundation models with significantly reduced computational cost, promoting efficiency and accessibility.
PDF 14 pages + 6 figures in main manuscript (excluding references)


Convolutional Prompting meets Language Models for Continual Learning

Authors:Anurag Roy, Riddhiman Moulick, Vinay K. Verma, Saptarshi Ghosh, Abir Das

Continual Learning (CL) enables machine learning models to learn from continuously shifting new training data in absence of data from old tasks. Recently, pretrained vision transformers combined with prompt tuning have shown promise for overcoming catastrophic forgetting in CL. These approaches rely on a pool of learnable prompts which can be inefficient in sharing knowledge across tasks leading to inferior performance. In addition, the lack of fine-grained layer specific prompts does not allow these to fully express the strength of the prompts for CL. We address these limitations by proposing ConvPrompt, a novel convolutional prompt creation mechanism that maintains layer-wise shared embeddings, enabling both layer-specific learning and better concept transfer across tasks. The intelligent use of convolution enables us to maintain a low parameter overhead without compromising performance. We further leverage Large Language Models to generate fine-grained text descriptions of each category which are used to get task similarity and dynamically decide the number of prompts to be learned. Extensive experiments demonstrate the superiority of ConvPrompt and improves SOTA by ~3% with significantly less parameter overhead. We also perform strong ablation over various modules to disentangle the importance of different components.
PDF CVPR 2024 Camera Ready


Gecko: Versatile Text Embeddings Distilled from Large Language Models

Authors:Jinhyuk Lee, Zhuyun Dai, Xiaoqi Ren, Blair Chen, Daniel Cer, Jeremy R. Cole, Kai Hui, Michael Boratko, Rajvi Kapadia, Wen Ding, Yi Luan, Sai Meher Karthik Duddu, Gustavo Hernandez Abrego, Weiqiang Shi, Nithi Gupta, Aditya Kusupati, Prateek Jain, Siddhartha Reddy Jonnalagadda, Ming-Wei Chang, Iftekhar Naim

We present Gecko, a compact and versatile text embedding model. Gecko achieves strong retrieval performance by leveraging a key idea: distilling knowledge from large language models (LLMs) into a retriever. Our two-step distillation process begins with generating diverse, synthetic paired data using an LLM. Next, we further refine the data quality by retrieving a set of candidate passages for each query, and relabeling the positive and hard negative passages using the same LLM. The effectiveness of our approach is demonstrated by the compactness of the Gecko. On the Massive Text Embedding Benchmark (MTEB), Gecko with 256 embedding dimensions outperforms all existing entries with 768 embedding size. Gecko with 768 embedding dimensions achieves an average score of 66.31, competing with 7x larger models and 5x higher dimensional embeddings.
PDF 18 pages


ReALM: Reference Resolution As Language Modeling

Authors:Joel Ruben Antony Moniz, Soundarya Krishnan, Melis Ozyildirim, Prathamesh Saraf, Halim Cagri Ates, Yuan Zhang, Hong Yu, Nidhi Rajshree

Reference resolution is an important problem, one that is essential to understand and successfully handle context of different kinds. This context includes both previous turns and context that pertains to non-conversational entities, such as entities on the user’s screen or those running in the background. While LLMs have been shown to be extremely powerful for a variety of tasks, their use in reference resolution, particularly for non-conversational entities, remains underutilized. This paper demonstrates how LLMs can be used to create an extremely effective system to resolve references of various types, by showing how reference resolution can be converted into a language modeling problem, despite involving forms of entities like those on screen that are not traditionally conducive to being reduced to a text-only modality. We demonstrate large improvements over an existing system with similar functionality across different types of references, with our smallest model obtaining absolute gains of over 5% for on-screen references. We also benchmark against GPT-3.5 and GPT-4, with our smallest model achieving performance comparable to that of GPT-4, and our larger models substantially outperforming it.


Are We on the Right Way for Evaluating Large Vision-Language Models?

Authors:Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi Wang, Yu Qiao, Dahua Lin, Feng Zhao

Large vision-language models (LVLMs) have recently achieved rapid progress, sparking numerous studies to evaluate their multi-modal capabilities. However, we dig into current evaluation works and identify two primary issues: 1) Visual content is unnecessary for many samples. The answers can be directly inferred from the questions and options, or the world knowledge embedded in LLMs. This phenomenon is prevalent across current benchmarks. For instance, GeminiPro achieves 42.9% on the MMMU benchmark without any visual input, and outperforms the random choice baseline across six benchmarks over 20% on average. 2) Unintentional data leakage exists in LLM and LVLM training. LLM and LVLM could still answer some visual-necessary questions without visual content, indicating the memorizing of these samples within large-scale training data. For example, Sphinx-X-MoE gets 43.6% on MMMU without accessing images, surpassing its LLM backbone with 17.9%. Both problems lead to misjudgments of actual multi-modal gains and potentially misguide the study of LVLM. To this end, we present MMStar, an elite vision-indispensable multi-modal benchmark comprising 1,500 samples meticulously selected by humans. MMStar benchmarks 6 core capabilities and 18 detailed axes, aiming to evaluate LVLMs’ multi-modal capacities with carefully balanced and purified samples. These samples are first roughly selected from current benchmarks with an automated pipeline, human review is then involved to ensure each curated sample exhibits visual dependency, minimal data leakage, and requires advanced multi-modal capabilities. Moreover, two metrics are developed to measure data leakage and actual performance gain in multi-modal training. We evaluate 16 leading LVLMs on MMStar to assess their multi-modal capabilities, and on 7 benchmarks with the proposed metrics to investigate their data leakage and actual multi-modal gain.
PDF Project page: https://mmstar-benchmark.github.io/


文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !