点云相关


2024-04-01 更新

A Unified Framework for Human-centric Point Cloud Video Understanding

Authors:Yiteng Xu, Kecheng Ye, Xiao Han, Yiming Ren, Xinge Zhu, Yuexin Ma

Human-centric Point Cloud Video Understanding (PVU) is an emerging field focused on extracting and interpreting human-related features from sequences of human point clouds, further advancing downstream human-centric tasks and applications. Previous works usually focus on tackling one specific task and rely on huge labeled data, which has poor generalization capability. Considering that human has specific characteristics, including the structural semantics of human body and the dynamics of human motions, we propose a unified framework to make full use of the prior knowledge and explore the inherent features in the data itself for generalized human-centric point cloud video understanding. Extensive experiments demonstrate that our method achieves state-of-the-art performance on various human-related tasks, including action recognition and 3D pose estimation. All datasets and code will be released soon.
PDF Accepted by CVPR 2024

点此查看论文截图

SGD: Street View Synthesis with Gaussian Splatting and Diffusion Prior

Authors:Zhongrui Yu, Haoran Wang, Jinze Yang, Hanzhang Wang, Zeke Xie, Yunfeng Cai, Jiale Cao, Zhong Ji, Mingming Sun

Novel View Synthesis (NVS) for street scenes play a critical role in the autonomous driving simulation. The current mainstream technique to achieve it is neural rendering, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS). Although thrilling progress has been made, when handling street scenes, current methods struggle to maintain rendering quality at the viewpoint that deviates significantly from the training viewpoints. This issue stems from the sparse training views captured by a fixed camera on a moving vehicle. To tackle this problem, we propose a novel approach that enhances the capacity of 3DGS by leveraging prior from a Diffusion Model along with complementary multi-modal data. Specifically, we first fine-tune a Diffusion Model by adding images from adjacent frames as condition, meanwhile exploiting depth data from LiDAR point clouds to supply additional spatial information. Then we apply the Diffusion Model to regularize the 3DGS at unseen views during training. Experimental results validate the effectiveness of our method compared with current state-of-the-art models, and demonstrate its advance in rendering images from broader views.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录