MMT


2024-03-30 更新

Semantic Textual Similarity Assessment in Chest X-ray Reports Using a Domain-Specific Cosine-Based Metric

Authors:Sayeh Gholipour Picha, Dawood Al Chanti, Alice Caplier

Medical language processing and deep learning techniques have emerged as critical tools for improving healthcare, particularly in the analysis of medical imaging and medical text data. These multimodal data fusion techniques help to improve the interpretation of medical imaging and lead to increased diagnostic accuracy, informed clinical decisions, and improved patient outcomes. The success of these models relies on the ability to extract and consolidate semantic information from clinical text. This paper addresses the need for more robust methods to evaluate the semantic content of medical reports. Conventional natural language processing approaches and metrics are initially designed for considering the semantic context in the natural language domain and machine translation, often failing to capture the complex semantic meanings inherent in medical content. In this study, we introduce a novel approach designed specifically for assessing the semantic similarity between generated medical reports and the ground truth. Our approach is validated, demonstrating its efficiency in assessing domain-specific semantic similarity within medical contexts. By applying our metric to state-of-the-art Chest X-ray report generation models, we obtain results that not only align with conventional metrics but also provide more contextually meaningful scores in the considered medical domain.
PDF

点此查看论文截图

m3P: Towards Multimodal Multilingual Translation with Multimodal Prompt

Authors:Jian Yang, Hongcheng Guo, Yuwei Yin, Jiaqi Bai, Bing Wang, Jiaheng Liu, Xinnian Liang, Linzheng Cahi, Liqun Yang, Zhoujun Li

Multilingual translation supports multiple translation directions by projecting all languages in a shared space, but the translation quality is undermined by the difference between languages in the text-only modality, especially when the number of languages is large. To bridge this gap, we introduce visual context as the universal language-independent representation to facilitate multilingual translation. In this paper, we propose a framework to leverage the multimodal prompt to guide the Multimodal Multilingual neural Machine Translation (m3P), which aligns the representations of different languages with the same meaning and generates the conditional vision-language memory for translation. We construct a multilingual multimodal instruction dataset (InstrMulti102) to support 102 languages. Our method aims to minimize the representation distance of different languages by regarding the image as a central language. Experimental results show that m3P outperforms previous text-only baselines and multilingual multimodal methods by a large margin. Furthermore, the probing experiments validate the effectiveness of our method in enhancing translation under the low-resource and massively multilingual scenario.
PDF COLING 2024

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录