LLM


2024-03-30 更新

MATEval: A Multi-Agent Discussion Framework for Advancing Open-Ended Text Evaluation

Authors:Yu Li, Shenyu Zhang, Rui Wu, Xiutian Huang, Yongrui Chen, Wenhao Xu, Guilin Qi, Dehai Min

Recent advancements in generative Large Language Models(LLMs) have been remarkable, however, the quality of the text generated by these models often reveals persistent issues. Evaluating the quality of text generated by these models, especially in open-ended text, has consistently presented a significant challenge. Addressing this, recent work has explored the possibility of using LLMs as evaluators. While using a single LLM as an evaluation agent shows potential, it is filled with significant uncertainty and instability. To address these issues, we propose the MATEval: A “Multi-Agent Text Evaluation framework” where all agents are played by LLMs like GPT-4. The MATEval framework emulates human collaborative discussion methods, integrating multiple agents’ interactions to evaluate open-ended text. Our framework incorporates self-reflection and Chain-of-Thought (CoT) strategies, along with feedback mechanisms, enhancing the depth and breadth of the evaluation process and guiding discussions towards consensus, while the framework generates comprehensive evaluation reports, including error localization, error types and scoring. Experimental results show that our framework outperforms existing open-ended text evaluation methods and achieves the highest correlation with human evaluation, which confirms the effectiveness and advancement of our framework in addressing the uncertainties and instabilities in evaluating LLMs-generated text. Furthermore, our framework significantly improves the efficiency of text evaluation and model iteration in industrial scenarios.
PDF This paper has been ACCEPTED as a LONG PAPER presentation by DASFAA 2024 Industrial Track

点此查看论文截图

Plug-and-Play Grounding of Reasoning in Multimodal Large Language Models

Authors:Jiaxing Chen, Yuxuan Liu, Dehu Li, Xiang An, Ziyong Feng, Yongle Zhao, Yin Xie

The surge of Multimodal Large Language Models (MLLMs), given their prominent emergent capabilities in instruction following and reasoning, has greatly advanced the field of visual reasoning. However, constrained by their non-lossless image tokenization, most MLLMs fall short of comprehensively capturing details of text and objects, especially in high-resolution images. To address this, we propose P2G, a novel framework for plug-and-play grounding of reasoning in MLLMs. Specifically, P2G exploits the tool-usage potential of MLLMs to employ expert agents to achieve on-the-fly grounding to critical visual and textual objects of image, thus achieving deliberate reasoning via multimodal prompting. We further create P2GB, a benchmark aimed at assessing MLLMs’ ability to understand inter-object relationships and text in challenging high-resolution images. Comprehensive experiments on visual reasoning tasks demonstrate the superiority of P2G. Noteworthy, P2G achieved comparable performance with GPT-4V on P2GB, with a 7B backbone. Our work highlights the potential of plug-and-play grounding of reasoning and opens up a promising alternative beyond model scaling.
PDF 14 pages, 3 figures

点此查看论文截图

IVLMap: Instance-Aware Visual Language Grounding for Consumer Robot Navigation

Authors:Jiacui Huang, Hongtao Zhang, Mingbo Zhao, Zhou Wu

Vision-and-Language Navigation (VLN) is a challenging task that requires a robot to navigate in photo-realistic environments with human natural language promptings. Recent studies aim to handle this task by constructing the semantic spatial map representation of the environment, and then leveraging the strong ability of reasoning in large language models for generalizing code for guiding the robot navigation. However, these methods face limitations in instance-level and attribute-level navigation tasks as they cannot distinguish different instances of the same object. To address this challenge, we propose a new method, namely, Instance-aware Visual Language Map (IVLMap), to empower the robot with instance-level and attribute-level semantic mapping, where it is autonomously constructed by fusing the RGBD video data collected from the robot agent with special-designed natural language map indexing in the bird’s-in-eye view. Such indexing is instance-level and attribute-level. In particular, when integrated with a large language model, IVLMap demonstrates the capability to i) transform natural language into navigation targets with instance and attribute information, enabling precise localization, and ii) accomplish zero-shot end-to-end navigation tasks based on natural language commands. Extensive navigation experiments are conducted. Simulation results illustrate that our method can achieve an average improvement of 14.4\% in navigation accuracy. Code and demo are released at https://ivlmap.github.io/.
PDF

点此查看论文截图

Checkpoint Merging via Bayesian Optimization in LLM Pretraining

Authors:Deyuan Liu, Zecheng Wang, Bingning Wang, Weipeng Chen, Chunshan Li, Zhiying Tu, Dianhui Chu, Bo Li, Dianbo Sui

The rapid proliferation of large language models (LLMs) such as GPT-4 and Gemini underscores the intense demand for resources during their training processes, posing significant challenges due to substantial computational and environmental costs. To alleviate this issue, we propose checkpoint merging in pretraining LLM. This method utilizes LLM checkpoints with shared training trajectories, and is rooted in an extensive search space exploration for the best merging weight via Bayesian optimization. Through various experiments, we demonstrate that: (1) Our proposed methodology exhibits the capacity to augment pretraining, presenting an opportunity akin to obtaining substantial benefits at minimal cost; (2) Our proposed methodology, despite requiring a given held-out dataset, still demonstrates robust generalization capabilities across diverse domains, a pivotal aspect in pretraining.
PDF

点此查看论文截图

BP4ER: Bootstrap Prompting for Explicit Reasoning in Medical Dialogue Generation

Authors:Yuhong He, Yongqi Zhang, Shizhu He, Jun Wan

Medical dialogue generation (MDG) has gained increasing attention due to its substantial practical value. Previous works typically employ a sequence-to-sequence framework to generate medical responses by modeling dialogue context as sequential text with annotated medical entities. While these methods have been successful in generating fluent responses, they fail to provide process explanations of reasoning and require extensive entity annotation. To address these limitations, we propose the method Bootstrap Prompting for Explicit Reasoning in MDG (BP4ER), which explicitly model MDG’s multi-step reasoning process and iteratively enhance this reasoning process. We employ a least-to-most prompting strategy to guide a large language model (LLM) in explicit reasoning, breaking down MDG into simpler sub-questions. These sub-questions build on answers from previous ones. Additionally, we also introduce two distinct bootstrapping techniques for prompting, which autonomously correct errors and facilitate the LLM’s explicit reasoning. This approach eliminates the need for entity annotation and increases the transparency of the MDG process by explicitly generating the intermediate reasoning chain. The experimental findings on the two public datasets indicate that BP4ER outperforms state-of-the-art methods in terms of both objective and subjective evaluation metrics.
PDF Accepted at LREC-COLING 2024

点此查看论文截图

OAKINK2: A Dataset of Bimanual Hands-Object Manipulation in Complex Task Completion

Authors:Xinyu Zhan, Lixin Yang, Yifei Zhao, Kangrui Mao, Hanlin Xu, Zenan Lin, Kailin Li, Cewu Lu

We present OAKINK2, a dataset of bimanual object manipulation tasks for complex daily activities. In pursuit of constructing the complex tasks into a structured representation, OAKINK2 introduces three level of abstraction to organize the manipulation tasks: Affordance, Primitive Task, and Complex Task. OAKINK2 features on an object-centric perspective for decoding the complex tasks, treating them as a sequence of object affordance fulfillment. The first level, Affordance, outlines the functionalities that objects in the scene can afford, the second level, Primitive Task, describes the minimal interaction units that humans interact with the object to achieve its affordance, and the third level, Complex Task, illustrates how Primitive Tasks are composed and interdependent. OAKINK2 dataset provides multi-view image streams and precise pose annotations for the human body, hands and various interacting objects. This extensive collection supports applications such as interaction reconstruction and motion synthesis. Based on the 3-level abstraction of OAKINK2, we explore a task-oriented framework for Complex Task Completion (CTC). CTC aims to generate a sequence of bimanual manipulation to achieve task objectives. Within the CTC framework, we employ Large Language Models (LLMs) to decompose the complex task objectives into sequences of Primitive Tasks and have developed a Motion Fulfillment Model that generates bimanual hand motion for each Primitive Task. OAKINK2 datasets and models are available at https://oakink.net/v2.
PDF To be appeared in CVPR 2024. 26 pages

点此查看论文截图

Change-Agent: Towards Interactive Comprehensive Change Interpretation and Analysis from Change Detection and Change Captioning

Authors:Chenyang Liu, Keyan Chen, Haotian Zhang, Zipeng Qi, Zhengxia Zou, Zhenwei Shi

Monitoring changes in the Earth’s surface is crucial for understanding natural processes and human impacts, necessitating precise and comprehensive interpretation methodologies. Remote sensing satellite imagery offers a unique perspective for monitoring these changes, leading to the emergence of remote sensing image change interpretation (RSICI) as a significant research focus. Current RSICI technology encompasses change detection and change captioning, each with its limitations in providing comprehensive interpretation. To address this, we propose an interactive Change-Agent which integrates a multi-level change interpretation (MCI) model as eyes and a large language model (LLM) as the brain. Our Change-Agent can follow user instructions to achieve comprehensive change interpretation and insightful analysis according to user instructions, such as change detection and change captioning, change object counting, change cause analysis, etc. Our proposed MCI model contains two branches of pixel-level change detection and semantic-level change captioning, in which multiple BI-temporal Iterative Interaction (BI3) layers utilize Local Perception Enhancement (LPE) and the Global Difference Fusion Attention (GDFA) modules to enhance the model’s discriminative feature representation capabilities. To train the MCI model, we build the LEVIR-MCI dataset with change masks and captions of bi-temporal images. Extensive experiments demonstrate the effectiveness of the proposed change interpretation model and highlight the promising potential of our Change-Agent in facilitating comprehensive and intelligent interpretation of surface changes. We will make our dataset and codebase of the change interpretation model and Change-Agent publicly available to facilitate future research at https://github.com/Chen-Yang-Liu/Change-Agent
PDF

点此查看论文截图

MagicLens: Self-Supervised Image Retrieval with Open-Ended Instructions

Authors:Kai Zhang, Yi Luan, Hexiang Hu, Kenton Lee, Siyuan Qiao, Wenhu Chen, Yu Su, Ming-Wei Chang

Image retrieval, i.e., finding desired images given a reference image, inherently encompasses rich, multi-faceted search intents that are difficult to capture solely using image-based measures. Recent work leverages text instructions to allow users to more freely express their search intents. However, existing work primarily focuses on image pairs that are visually similar and/or can be characterized by a small set of pre-defined relations. The core thesis of this paper is that text instructions can enable retrieving images with richer relations beyond visual similarity. To show this, we introduce MagicLens, a series of self-supervised image retrieval models that support open-ended instructions. MagicLens is built on a key novel insight: image pairs that naturally occur on the same web pages contain a wide range of implicit relations (e.g., inside view of), and we can bring those implicit relations explicit by synthesizing instructions via large multimodal models (LMMs) and large language models (LLMs). Trained on 36.7M (query image, instruction, target image) triplets with rich semantic relations mined from the web, MagicLens achieves comparable or better results on eight benchmarks of various image retrieval tasks than prior state-of-the-art (SOTA) methods. Remarkably, it outperforms previous SOTA but with a 50X smaller model size on multiple benchmarks. Additional human analyses on a 1.4M-image unseen corpus further demonstrate the diversity of search intents supported by MagicLens.
PDF Work in progress

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录