Domain Adaptation


2024-03-30 更新

ZoDi: Zero-Shot Domain Adaptation with Diffusion-Based Image Transfer

Authors:Hiroki Azuma, Yusuke Matsui, Atsuto Maki

Deep learning models achieve high accuracy in segmentation tasks among others, yet domain shift often degrades the models’ performance, which can be critical in real-world scenarios where no target images are available. This paper proposes a zero-shot domain adaptation method based on diffusion models, called ZoDi, which is two-fold by the design: zero-shot image transfer and model adaptation. First, we utilize an off-the-shelf diffusion model to synthesize target-like images by transferring the domain of source images to the target domain. In this we specifically try to maintain the layout and content by utilising layout-to-image diffusion models with stochastic inversion. Secondly, we train the model using both source images and synthesized images with the original segmentation maps while maximizing the feature similarity of images from the two domains to learn domain-robust representations. Through experiments we show benefits of ZoDi in the task of image segmentation over state-of-the-art methods. It is also more applicable than existing CLIP-based methods because it assumes no specific backbone or models, and it enables to estimate the model’s performance without target images by inspecting generated images. Our implementation will be publicly available.
PDF

点此查看论文截图

GLC++: Source-Free Universal Domain Adaptation through Global-Local Clustering and Contrastive Affinity Learning

Authors:Sanqing Qu, Tianpei Zou, Florian Röhrbein, Cewu Lu, Guang Chen, Dacheng Tao, Changjun Jiang

Deep neural networks often exhibit sub-optimal performance under covariate and category shifts. Source-Free Domain Adaptation (SFDA) presents a promising solution to this dilemma, yet most SFDA approaches are restricted to closed-set scenarios. In this paper, we explore Source-Free Universal Domain Adaptation (SF-UniDA) aiming to accurately classify “known” data belonging to common categories and segregate them from target-private “unknown” data. We propose a novel Global and Local Clustering (GLC) technique, which comprises an adaptive one-vs-all global clustering algorithm to discern between target classes, complemented by a local k-NN clustering strategy to mitigate negative transfer. Despite the effectiveness, the inherent closed-set source architecture leads to uniform treatment of “unknown” data, impeding the identification of distinct “unknown” categories. To address this, we evolve GLC to GLC++, integrating a contrastive affinity learning strategy. We examine the superiority of GLC and GLC++ across multiple benchmarks and category shift scenarios. Remarkably, in the most challenging open-partial-set scenarios, GLC and GLC++ surpass GATE by 16.7% and 18.6% in H-score on VisDA, respectively. GLC++ enhances the novel category clustering accuracy of GLC by 4.3% in open-set scenarios on Office-Home. Furthermore, the introduced contrastive learning strategy not only enhances GLC but also significantly facilitates existing methodologies.
PDF This is a substantial extension of the CVPR 2023 paper “Upcycling Models under Domain and Category Shift”

点此查看论文截图

DP-RDM: Adapting Diffusion Models to Private Domains Without Fine-Tuning

Authors:Jonathan Lebensold, Maziar Sanjabi, Pietro Astolfi, Adriana Romero-Soriano, Kamalika Chaudhuri, Mike Rabbat, Chuan Guo

Text-to-image diffusion models have been shown to suffer from sample-level memorization, possibly reproducing near-perfect replica of images that they are trained on, which may be undesirable. To remedy this issue, we develop the first differentially private (DP) retrieval-augmented generation algorithm that is capable of generating high-quality image samples while providing provable privacy guarantees. Specifically, we assume access to a text-to-image diffusion model trained on a small amount of public data, and design a DP retrieval mechanism to augment the text prompt with samples retrieved from a private retrieval dataset. Our \emph{differentially private retrieval-augmented diffusion model} (DP-RDM) requires no fine-tuning on the retrieval dataset to adapt to another domain, and can use state-of-the-art generative models to generate high-quality image samples while satisfying rigorous DP guarantees. For instance, when evaluated on MS-COCO, our DP-RDM can generate samples with a privacy budget of $\epsilon=10$, while providing a $3.5$ point improvement in FID compared to public-only retrieval for up to $10,000$ queries.
PDF

点此查看论文截图

Improve Cross-domain Mixed Sampling with Guidance Training for Adaptive Segmentation

Authors:Wenlve Zhou, Zhiheng Zhou, Tianlei Wang, Delu Zeng

Unsupervised Domain Adaptation (UDA) endeavors to adjust models trained on a source domain to perform well on a target domain without requiring additional annotations. In the context of domain adaptive semantic segmentation, which tackles UDA for dense prediction, the goal is to circumvent the need for costly pixel-level annotations. Typically, various prevailing methods baseline rely on constructing intermediate domains via cross-domain mixed sampling techniques to mitigate the performance decline caused by domain gaps. However, such approaches generate synthetic data that diverge from real-world distributions, potentially leading the model astray from the true target distribution. To address this challenge, we propose a novel auxiliary task called Guidance Training. This task facilitates the effective utilization of cross-domain mixed sampling techniques while mitigating distribution shifts from the real world. Specifically, Guidance Training guides the model to extract and reconstruct the target-domain feature distribution from mixed data, followed by decoding the reconstructed target-domain features to make pseudo-label predictions. Importantly, integrating Guidance Training incurs minimal training overhead and imposes no additional inference burden. We demonstrate the efficacy of our approach by integrating it with existing methods, consistently improving performance. The implementation will be available at https://github.com/Wenlve-Zhou/Guidance-Training.
PDF

点此查看论文截图

Adversarially Masked Video Consistency for Unsupervised Domain Adaptation

Authors:Xiaoyu Zhu, Junwei Liang, Po-Yao Huang, Alex Hauptmann

We study the problem of unsupervised domain adaptation for egocentric videos. We propose a transformer-based model to learn class-discriminative and domain-invariant feature representations. It consists of two novel designs. The first module is called Generative Adversarial Domain Alignment Network with the aim of learning domain-invariant representations. It simultaneously learns a mask generator and a domain-invariant encoder in an adversarial way. The domain-invariant encoder is trained to minimize the distance between the source and target domain. The masking generator, conversely, aims at producing challenging masks by maximizing the domain distance. The second is a Masked Consistency Learning module to learn class-discriminative representations. It enforces the prediction consistency between the masked target videos and their full forms. To better evaluate the effectiveness of domain adaptation methods, we construct a more challenging benchmark for egocentric videos, U-Ego4D. Our method achieves state-of-the-art performance on the Epic-Kitchen and the proposed U-Ego4D benchmark.
PDF

点此查看论文截图

CoDA: Instructive Chain-of-Domain Adaptation with Severity-Aware Visual Prompt Tuning

Authors:Ziyang Gong, Fuhao Li, Yupeng Deng, Deblina Bhattacharjee, Xiangwei Zhu, Zhenming Ji

Unsupervised Domain Adaptation (UDA) aims to adapt models from labeled source domains to unlabeled target domains. When adapting to adverse scenes, existing UDA methods fail to perform well due to the lack of instructions, leading their models to overlook discrepancies within all adverse scenes. To tackle this, we propose CoDA which instructs models to distinguish, focus, and learn from these discrepancies at scene and image levels. Specifically, CoDA consists of a Chain-of-Domain (CoD) strategy and a Severity-Aware Visual Prompt Tuning (SAVPT) mechanism. CoD focuses on scene-level instructions to divide all adverse scenes into easy and hard scenes, guiding models to adapt from source to easy domains with easy scene images, and then to hard domains with hard scene images, thereby laying a solid foundation for whole adaptations. Building upon this foundation, we employ SAVPT to dive into more detailed image-level instructions to boost performance. SAVPT features a novel metric Severity that divides all adverse scene images into low-severity and high-severity images. Then Severity directs visual prompts and adapters, instructing models to concentrate on unified severity features instead of scene-specific features, without adding complexity to the model architecture. CoDA achieves SOTA performances on widely-used benchmarks under all adverse scenes. Notably, CoDA outperforms the existing ones by 4.6%, and 10.3% mIoU on the Foggy Driving, and Foggy Zurich benchmarks, respectively. Our code is available at https://github.com/Cuzyoung/CoDA
PDF

点此查看论文截图

UADA3D: Unsupervised Adversarial Domain Adaptation for 3D Object Detection with Sparse LiDAR and Large Domain Gaps

Authors:Maciej K Wozniak, Mattias Hansson, Marko Thiel, Patric Jensfelt

In this study, we address a gap in existing unsupervised domain adaptation approaches on LiDAR-based 3D object detection, which have predominantly concentrated on adapting between established, high-density autonomous driving datasets. We focus on sparser point clouds, capturing scenarios from different perspectives: not just from vehicles on the road but also from mobile robots on sidewalks, which encounter significantly different environmental conditions and sensor configurations. We introduce Unsupervised Adversarial Domain Adaptation for 3D Object Detection (UADA3D). UADA3D does not depend on pre-trained source models or teacher-student architectures. Instead, it uses an adversarial approach to directly learn domain-invariant features. We demonstrate its efficacy in various adaptation scenarios, showing significant improvements in both self-driving car and mobile robot domains. Our code is open-source and will be available soon.
PDF

点此查看论文截图

Learning CNN on ViT: A Hybrid Model to Explicitly Class-specific Boundaries for Domain Adaptation

Authors:Ba Hung Ngo, Nhat-Tuong Do-Tran, Tuan-Ngoc Nguyen, Hae-Gon Jeon, Tae Jong Choi

Most domain adaptation (DA) methods are based on either a convolutional neural networks (CNNs) or a vision transformers (ViTs). They align the distribution differences between domains as encoders without considering their unique characteristics. For instance, ViT excels in accuracy due to its superior ability to capture global representations, while CNN has an advantage in capturing local representations. This fact has led us to design a hybrid method to fully take advantage of both ViT and CNN, called Explicitly Class-specific Boundaries (ECB). ECB learns CNN on ViT to combine their distinct strengths. In particular, we leverage ViT’s properties to explicitly find class-specific decision boundaries by maximizing the discrepancy between the outputs of the two classifiers to detect target samples far from the source support. In contrast, the CNN encoder clusters target features based on the previously defined class-specific boundaries by minimizing the discrepancy between the probabilities of the two classifiers. Finally, ViT and CNN mutually exchange knowledge to improve the quality of pseudo labels and reduce the knowledge discrepancies of these models. Compared to conventional DA methods, our ECB achieves superior performance, which verifies its effectiveness in this hybrid model. The project website can be found https://dotrannhattuong.github.io/ECB/website/.
PDF

点此查看论文截图

BLADE: Enhancing Black-box Large Language Models with Small Domain-Specific Models

Authors:Haitao Li, Qingyao Ai, Jia Chen, Qian Dong, Zhijing Wu, Yiqun Liu, Chong Chen, Qi Tian

Large Language Models (LLMs) like ChatGPT and GPT-4 are versatile and capable of addressing a diverse range of tasks. However, general LLMs, which are developed on open-domain data, may lack the domain-specific knowledge essential for tasks in vertical domains, such as legal, medical, etc. To address this issue, previous approaches either conduct continuous pre-training with domain-specific data or employ retrieval augmentation to support general LLMs. Unfortunately, these strategies are either cost-intensive or unreliable in practical applications. To this end, we present a novel framework named BLADE, which enhances Black-box LArge language models with small Domain-spEcific models. BLADE consists of a black-box LLM and a small domain-specific LM. The small LM preserves domain-specific knowledge and offers specialized insights, while the general LLM contributes robust language comprehension and reasoning capabilities. Specifically, our method involves three steps: 1) pre-training the small LM with domain-specific data, 2) fine-tuning this model using knowledge instruction data, and 3) joint Bayesian optimization of the general LLM and the small LM. Extensive experiments conducted on public legal and medical benchmarks reveal that BLADE significantly outperforms existing approaches. This shows the potential of BLADE as an effective and cost-efficient solution in adapting general LLMs for vertical domains.
PDF 11pages

点此查看论文截图

Backpropagation-free Network for 3D Test-time Adaptation

Authors:Yanshuo Wang, Ali Cheraghian, Zeeshan Hayder, Jie Hong, Sameera Ramasinghe, Shafin Rahman, David Ahmedt-Aristizabal, Xuesong Li, Lars Petersson, Mehrtash Harandi

Real-world systems often encounter new data over time, which leads to experiencing target domain shifts. Existing Test-Time Adaptation (TTA) methods tend to apply computationally heavy and memory-intensive backpropagation-based approaches to handle this. Here, we propose a novel method that uses a backpropagation-free approach for TTA for the specific case of 3D data. Our model uses a two-stream architecture to maintain knowledge about the source domain as well as complementary target-domain-specific information. The backpropagation-free property of our model helps address the well-known forgetting problem and mitigates the error accumulation issue. The proposed method also eliminates the need for the usually noisy process of pseudo-labeling and reliance on costly self-supervised training. Moreover, our method leverages subspace learning, effectively reducing the distribution variance between the two domains. Furthermore, the source-domain-specific and the target-domain-specific streams are aligned using a novel entropy-based adaptive fusion strategy. Extensive experiments on popular benchmarks demonstrate the effectiveness of our method. The code will be available at https://github.com/abie-e/BFTT3D.
PDF CVPR 2024

点此查看论文截图

SingularTrajectory: Universal Trajectory Predictor Using Diffusion Model

Authors:Inhwan Bae, Young-Jae Park, Hae-Gon Jeon

There are five types of trajectory prediction tasks: deterministic, stochastic, domain adaptation, momentary observation, and few-shot. These associated tasks are defined by various factors, such as the length of input paths, data split and pre-processing methods. Interestingly, even though they commonly take sequential coordinates of observations as input and infer future paths in the same coordinates as output, designing specialized architectures for each task is still necessary. For the other task, generality issues can lead to sub-optimal performances. In this paper, we propose SingularTrajectory, a diffusion-based universal trajectory prediction framework to reduce the performance gap across the five tasks. The core of SingularTrajectory is to unify a variety of human dynamics representations on the associated tasks. To do this, we first build a Singular space to project all types of motion patterns from each task into one embedding space. We next propose an adaptive anchor working in the Singular space. Unlike traditional fixed anchor methods that sometimes yield unacceptable paths, our adaptive anchor enables correct anchors, which are put into a wrong location, based on a traversability map. Finally, we adopt a diffusion-based predictor to further enhance the prototype paths using a cascaded denoising process. Our unified framework ensures the generality across various benchmark settings such as input modality, and trajectory lengths. Extensive experiments on five public benchmarks demonstrate that SingularTrajectory substantially outperforms existing models, highlighting its effectiveness in estimating general dynamics of human movements. Code is publicly available at https://github.com/inhwanbae/SingularTrajectory .
PDF Accepted at CVPR 2024

点此查看论文截图

Density-guided Translator Boosts Synthetic-to-Real Unsupervised Domain Adaptive Segmentation of 3D Point Clouds

Authors:Zhimin Yuan, Wankang Zeng, Yanfei Su, Weiquan Liu, Ming Cheng, Yulan Guo, Cheng Wang

3D synthetic-to-real unsupervised domain adaptive segmentation is crucial to annotating new domains. Self-training is a competitive approach for this task, but its performance is limited by different sensor sampling patterns (i.e., variations in point density) and incomplete training strategies. In this work, we propose a density-guided translator (DGT), which translates point density between domains, and integrates it into a two-stage self-training pipeline named DGT-ST. First, in contrast to existing works that simultaneously conduct data generation and feature/output alignment within unstable adversarial training, we employ the non-learnable DGT to bridge the domain gap at the input level. Second, to provide a well-initialized model for self-training, we propose a category-level adversarial network in stage one that utilizes the prototype to prevent negative transfer. Finally, by leveraging the designs above, a domain-mixed self-training method with source-aware consistency loss is proposed in stage two to narrow the domain gap further. Experiments on two synthetic-to-real segmentation tasks (SynLiDAR $\rightarrow$ semanticKITTI and SynLiDAR $\rightarrow$ semanticPOSS) demonstrate that DGT-ST outperforms state-of-the-art methods, achieving 9.4$\%$ and 4.3$\%$ mIoU improvements, respectively. Code is available at \url{https://github.com/yuan-zm/DGT-ST}.
PDF CVPR2024

点此查看论文截图

A Real-Time Framework for Domain-Adaptive Underwater Object Detection with Image Enhancement

Authors:Junjie Wen, Jinqiang Cui, Benyun Zhao, Bingxin Han, Xuchen Liu, Zhi Gao, Ben M. Chen

In recent years, significant progress has been made in the field of underwater image enhancement (UIE). However, its practical utility for high-level vision tasks, such as underwater object detection (UOD) in Autonomous Underwater Vehicles (AUVs), remains relatively unexplored. It may be attributed to several factors: (1) Existing methods typically employ UIE as a pre-processing step, which inevitably introduces considerable computational overhead and latency. (2) The process of enhancing images prior to training object detectors may not necessarily yield performance improvements. (3) The complex underwater environments can induce significant domain shifts across different scenarios, seriously deteriorating the UOD performance. To address these challenges, we introduce EnYOLO, an integrated real-time framework designed for simultaneous UIE and UOD with domain-adaptation capability. Specifically, both the UIE and UOD task heads share the same network backbone and utilize a lightweight design. Furthermore, to ensure balanced training for both tasks, we present a multi-stage training strategy aimed at consistently enhancing their performance. Additionally, we propose a novel domain-adaptation strategy to align feature embeddings originating from diverse underwater environments. Comprehensive experiments demonstrate that our framework not only achieves state-of-the-art (SOTA) performance in both UIE and UOD tasks, but also shows superior adaptability when applied to different underwater scenarios. Our efficiency analysis further highlights the substantial potential of our framework for onboard deployment.
PDF accepted by ICRA24

点此查看论文截图

GeoAuxNet: Towards Universal 3D Representation Learning for Multi-sensor Point Clouds

Authors:Shengjun Zhang, Xin Fei, Yueqi Duan

Point clouds captured by different sensors such as RGB-D cameras and LiDAR possess non-negligible domain gaps. Most existing methods design different network architectures and train separately on point clouds from various sensors. Typically, point-based methods achieve outstanding performances on even-distributed dense point clouds from RGB-D cameras, while voxel-based methods are more efficient for large-range sparse LiDAR point clouds. In this paper, we propose geometry-to-voxel auxiliary learning to enable voxel representations to access point-level geometric information, which supports better generalisation of the voxel-based backbone with additional interpretations of multi-sensor point clouds. Specifically, we construct hierarchical geometry pools generated by a voxel-guided dynamic point network, which efficiently provide auxiliary fine-grained geometric information adapted to different stages of voxel features. We conduct experiments on joint multi-sensor datasets to demonstrate the effectiveness of GeoAuxNet. Enjoying elaborate geometric information, our method outperforms other models collectively trained on multi-sensor datasets, and achieve competitive results with the-state-of-art experts on each single dataset.
PDF CVPR 2024

点此查看论文截图

CAT: Exploiting Inter-Class Dynamics for Domain Adaptive Object Detection

Authors:Mikhail Kennerley, Jian-Gang Wang, Bharadwaj Veeravalli, Robby T. Tan

Domain adaptive object detection aims to adapt detection models to domains where annotated data is unavailable. Existing methods have been proposed to address the domain gap using the semi-supervised student-teacher framework. However, a fundamental issue arises from the class imbalance in the labelled training set, which can result in inaccurate pseudo-labels. The relationship between classes, especially where one class is a majority and the other minority, has a large impact on class bias. We propose Class-Aware Teacher (CAT) to address the class bias issue in the domain adaptation setting. In our work, we approximate the class relationships with our Inter-Class Relation module (ICRm) and exploit it to reduce the bias within the model. In this way, we are able to apply augmentations to highly related classes, both inter- and intra-domain, to boost the performance of minority classes while having minimal impact on majority classes. We further reduce the bias by implementing a class-relation weight to our classification loss. Experiments conducted on various datasets and ablation studies show that our method is able to address the class bias in the domain adaptation setting. On the Cityscapes to Foggy Cityscapes dataset, we attained a 52.5 mAP, a substantial improvement over the 51.2 mAP achieved by the state-of-the-art method.
PDF Accepted into CVPR 2024

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录