2024-01-22 更新
Distribution Consistency based Self-Training for Graph Neural Networks with Sparse Labels
Authors:Fali Wang, Tianxiang Zhao, Suhang Wang
Few-shot node classification poses a significant challenge for Graph Neural Networks (GNNs) due to insufficient supervision and potential distribution shifts between labeled and unlabeled nodes. Self-training has emerged as a widely popular framework to leverage the abundance of unlabeled data, which expands the training set by assigning pseudo-labels to selected unlabeled nodes. Efforts have been made to develop various selection strategies based on confidence, information gain, etc. However, none of these methods takes into account the distribution shift between the training and testing node sets. The pseudo-labeling step may amplify this shift and even introduce new ones, hindering the effectiveness of self-training. Therefore, in this work, we explore the potential of explicitly bridging the distribution shift between the expanded training set and test set during self-training. To this end, we propose a novel Distribution-Consistent Graph Self-Training (DC-GST) framework to identify pseudo-labeled nodes that are both informative and capable of redeeming the distribution discrepancy and formulate it as a differentiable optimization task. A distribution-shift-aware edge predictor is further adopted to augment the graph and increase the model’s generalizability in assigning pseudo labels. We evaluate our proposed method on four publicly available benchmark datasets and extensive experiments demonstrate that our framework consistently outperforms state-of-the-art baselines.
PDF Accepted by WSDM 2024
点此查看论文截图
Name Tagging Under Domain Shift via Metric Learning for Life Sciences
Authors:Hongyi Liu, Qingyun Wang, Payam Karisani, Heng Ji
Name tagging is a key component of Information Extraction (IE), particularly in scientific domains such as biomedicine and chemistry, where large language models (LLMs), e.g., ChatGPT, fall short. We investigate the applicability of transfer learning for enhancing a name tagging model trained in the biomedical domain (the source domain) to be used in the chemical domain (the target domain). A common practice for training such a model in a few-shot learning setting is to pretrain the model on the labeled source data, and then, to finetune it on a hand-full of labeled target examples. In our experiments we observed that such a model is prone to mis-labeling the source entities, which can often appear in the text, as the target entities. To alleviate this problem, we propose a model to transfer the knowledge from the source domain to the target domain, however, at the same time, to project the source entities and target entities into separate regions of the feature space. This diminishes the risk of mis-labeling the source entities as the target entities. Our model consists of two stages: 1) entity grouping in the source domain, which incorporates knowledge from annotated events to establish relations between entities, and 2) entity discrimination in the target domain, which relies on pseudo labeling and contrastive learning to enhance discrimination between the entities in the two domains. We carry out our extensive experiments across three source and three target datasets, and demonstrate that our method outperforms the baselines, in some scenarios by 5\% absolute value.
PDF 19 pages
点此查看论文截图
FinSQL: Model-Agnostic LLMs-based Text-to-SQL Framework for Financial Analysis
Authors:Chao Zhang, Yuren Mao, Yijiang Fan, Yu Mi, Yunjun Gao, Lu Chen, Dongfang Lou, Jinshu Lin
Text-to-SQL, which provides zero-code interface for operating relational databases, has gained much attention in financial analysis; because, financial professionals may not well-skilled in SQL programming. However, until now, there is no practical Text-to-SQL benchmark dataset for financial analysis, and existing Text-to-SQL methods have not considered the unique characteristics of databases in financial applications, such as commonly existing wide tables. To address these issues, we collect a practical Text-to-SQL benchmark dataset and propose a model-agnostic Large Language Model (LLMs)-based Text-to-SQL framework for financial analysis. The benchmark dataset, BULL, is collected from the practical financial analysis business of Hundsun Technologies Inc., including databases for fund, stock, and macro economy. Besides, the proposed LLMs-based Text-to-SQL framework, FinSQL, provides a systematic treatment for financial Text-to-SQL from the perspectives of prompt construction, parameter-efficient fine-tuning and output calibration. Extensive experimental results on BULL demonstrate that FinSQL achieves the state-of-the-art Text-to-SQL performance at a small cost; furthermore, FinSQL can bring up to 36.64% performance improvement in scenarios requiring few-shot cross-database model transfer.
PDF 13 pages, 13 figures