2024-01-18 更新
CEL: A Continual Learning Model for Disease Outbreak Prediction by Leveraging Domain Adaptation via Elastic Weight Consolidation
Authors:Saba Aslam, Abdur Rasool, Hongyan Wu, Xiaoli Li
Continual learning, the ability of a model to learn over time without forgetting previous knowledge and, therefore, be adaptive to new data, is paramount in dynamic fields such as disease outbreak prediction. Deep neural networks, i.e., LSTM, are prone to error due to catastrophic forgetting. This study introduces a novel CEL model for continual learning by leveraging domain adaptation via Elastic Weight Consolidation (EWC). This model aims to mitigate the catastrophic forgetting phenomenon in a domain incremental setting. The Fisher Information Matrix (FIM) is constructed with EWC to develop a regularization term that penalizes changes to important parameters, namely, the important previous knowledge. CEL’s performance is evaluated on three distinct diseases, Influenza, Mpox, and Measles, with different metrics. The high R-squared values during evaluation and reevaluation outperform the other state-of-the-art models in several contexts, indicating that CEL adapts to incremental data well. CEL’s robustness and reliability are underscored by its minimal 65% forgetting rate and 18% higher memory stability compared to existing benchmark studies. This study highlights CEL’s versatility in disease outbreak prediction, addressing evolving data with temporal patterns. It offers a valuable model for proactive disease control with accurate, timely predictions.
PDF
点此查看论文截图
Rethinking Spectral Graph Neural Networks with Spatially Adaptive Filtering
Authors:Jingwei Guo, Kaizhu Huang, Xinping Yi, Zixian Su, Rui Zhang
Whilst spectral Graph Neural Networks (GNNs) are theoretically well-founded in the spectral domain, their practical reliance on polynomial approximation implies a profound linkage to the spatial domain. As previous studies rarely examine spectral GNNs from the spatial perspective, their spatial-domain interpretability remains elusive, e.g., what information is essentially encoded by spectral GNNs in the spatial domain? In this paper, to answer this question, we establish a theoretical connection between spectral filtering and spatial aggregation, unveiling an intrinsic interaction that spectral filtering implicitly leads the original graph to an adapted new graph, explicitly computed for spatial aggregation. Both theoretical and empirical investigations reveal that the adapted new graph not only exhibits non-locality but also accommodates signed edge weights to reflect label consistency between nodes. These findings thus highlight the interpretable role of spectral GNNs in the spatial domain and inspire us to rethink graph spectral filters beyond the fixed-order polynomials, which neglect global information. Built upon the theoretical findings, we revisit the state-of-the-art spectral GNNs and propose a novel Spatially Adaptive Filtering (SAF) framework, which leverages the adapted new graph by spectral filtering for an auxiliary non-local aggregation. Notably, our proposed SAF comprehensively models both node similarity and dissimilarity from a global perspective, therefore alleviating persistent deficiencies of GNNs related to long-range dependencies and graph heterophily. Extensive experiments over 13 node classification benchmarks demonstrate the superiority of our proposed framework to the state-of-the-art models.
PDF