2024-01-04 更新
Contrastive Learning-Based Framework for Sim-to-Real Mapping of Lidar Point Clouds in Autonomous Driving Systems
Authors:Hamed Haghighi, Mehrdad Dianati, Kurt Debattista, Valentina Donzella
Perception sensor models are essential elements of automotive simulation environments; they also serve as powerful tools for creating synthetic datasets to train deep learning-based perception models. Developing realistic perception sensor models poses a significant challenge due to the large gap between simulated sensor data and real-world sensor outputs, known as the sim-to-real gap. To address this problem, learning-based models have emerged as promising solutions in recent years, with unparalleled potential to map low-fidelity simulated sensor data into highly realistic outputs. Motivated by this potential, this paper focuses on sim-to-real mapping of Lidar point clouds, a widely used perception sensor in automated driving systems. We introduce a novel Contrastive-Learning-based Sim-to-Real mapping framework, namely CLS2R, inspired by the recent advancements in image-to-image translation techniques. The proposed CLS2R framework employs a lossless representation of Lidar point clouds, considering all essential Lidar attributes such as depth, reflectance, and raydrop. We extensively evaluate the proposed framework, comparing it with state-of-the-art image-to-image translation methods using a diverse range of metrics to assess realness, faithfulness, and the impact on the performance of a downstream task. Our results show that CLS2R demonstrates superior performance across nearly all metrics. Source code is available at https://github.com/hamedhaghighi/CLS2R.git.
PDF
点此查看论文截图
Multi-scale Progressive Feature Embedding for Accurate NIR-to-RGB Spectral Domain Translation
Authors:Xingxing Yang, Jie Chen, Zaifeng Yang
NIR-to-RGB spectral domain translation is a challenging task due to the mapping ambiguities, and existing methods show limited learning capacities. To address these challenges, we propose to colorize NIR images via a multi-scale progressive feature embedding network (MPFNet), with the guidance of grayscale image colorization. Specifically, we first introduce a domain translation module that translates NIR source images into the grayscale target domain. By incorporating a progressive training strategy, the statistical and semantic knowledge from both task domains are efficiently aligned with a series of pixel- and feature-level consistency constraints. Besides, a multi-scale progressive feature embedding network is designed to improve learning capabilities. Experiments show that our MPFNet outperforms state-of-the-art counterparts by 2.55 dB in the NIR-to-RGB spectral domain translation task in terms of PSNR.
PDF Accepted by IEEE VCIP 2023
点此查看论文截图
Learning Spatially Collaged Fourier Bases for Implicit Neural Representation
Authors:Jason Chun Lok Li, Chang Liu, Binxiao Huang, Ngai Wong
Existing approaches to Implicit Neural Representation (INR) can be interpreted as a global scene representation via a linear combination of Fourier bases of different frequencies. However, such universal basis functions can limit the representation capability in local regions where a specific component is unnecessary, resulting in unpleasant artifacts. To this end, we introduce a learnable spatial mask that effectively dispatches distinct Fourier bases into respective regions. This translates into collaging Fourier patches, thus enabling an accurate representation of complex signals. Comprehensive experiments demonstrate the superior reconstruction quality of the proposed approach over existing baselines across various INR tasks, including image fitting, video representation, and 3D shape representation. Our method outperforms all other baselines, improving the image fitting PSNR by over 3dB and 3D reconstruction to 98.81 IoU and 0.0011 Chamfer Distance.
PDF 11 pages, 13 figures, Accepted at the 38th AAAI Conference on Artificial Intelligence (AAAI-24)
点此查看论文截图
SynCDR : Training Cross Domain Retrieval Models with Synthetic Data
Authors:Samarth Mishra, Kate Saenko, Venkatesh Saligrama
In cross-domain retrieval, a model is required to identify images from the same semantic category across two visual domains. For instance, given a sketch of an object, a model needs to retrieve a real image of it from an online store’s catalog. A standard approach for such a problem is learning a feature space of images where Euclidean distances reflect similarity. Even without human annotations, which may be expensive to acquire, prior methods function reasonably well using unlabeled images for training. Our problem constraint takes this further to scenarios where the two domains do not necessarily share any common categories in training data. This can occur when the two domains in question come from different versions of some biometric sensor recording identities of different people. We posit a simple solution, which is to generate synthetic data to fill in these missing category examples across domains. This, we do via category preserving translation of images from one visual domain to another. We compare approaches specifically trained for this translation for a pair of domains, as well as those that can use large-scale pre-trained text-to-image diffusion models via prompts, and find that the latter can generate better replacement synthetic data, leading to more accurate cross-domain retrieval models. Code for our work is available at https://github.com/samarth4149/SynCDR .
PDF Pre-print