2023-12-25 更新
MoSAR: Monocular Semi-Supervised Model for Avatar Reconstruction using Differentiable Shading
Authors:Abdallah Dib, Luiz Gustavo Hafemann, Emeline Got, Trevor Anderson, Amin Fadaeinejad, Rafael M. O. Cruz, Marc-Andre Carbonneau
Reconstructing an avatar from a portrait image has many applications in multimedia, but remains a challenging research problem. Extracting reflectance maps and geometry from one image is ill-posed: recovering geometry is a one-to-many mapping problem and reflectance and light are difficult to disentangle. Accurate geometry and reflectance can be captured under the controlled conditions of a light stage, but it is costly to acquire large datasets in this fashion. Moreover, training solely with this type of data leads to poor generalization with in-the-wild images. This motivates the introduction of MoSAR, a method for 3D avatar generation from monocular images. We propose a semi-supervised training scheme that improves generalization by learning from both light stage and in-the-wild datasets. This is achieved using a novel differentiable shading formulation. We show that our approach effectively disentangles the intrinsic face parameters, producing relightable avatars. As a result, MoSAR estimates a richer set of skin reflectance maps, and generates more realistic avatars than existing state-of-the-art methods. We also introduce a new dataset, named FFHQ-UV-Intrinsics, the first public dataset providing intrinsic face attributes at scale (diffuse, specular, ambient occlusion and translucency maps) for a total of 10k subjects. The project website and the dataset are available on the following link: https://ubisoft-laforge.github.io/character/mosar/
PDF https://ubisoft-laforge.github.io/character/mosar/
点此查看论文截图
A Language-based solution to enable Metaverse Retrieval
Authors:Ali Abdari, Alex Falcon, Giuseppe Serra
Recently, the Metaverse is becoming increasingly attractive, with millions of users accessing the many available virtual worlds. However, how do users find the one Metaverse which best fits their current interests? So far, the search process is mostly done by word of mouth, or by advertisement on technology-oriented websites. However, the lack of search engines similar to those available for other multimedia formats (e.g., YouTube for videos) is showing its limitations, since it is often cumbersome to find a Metaverse based on some specific interests using the available methods, while also making it difficult to discover user-created ones which lack strong advertisement. To address this limitation, we propose to use language to naturally describe the desired contents of the Metaverse a user wishes to find. Second, we highlight that, differently from more conventional 3D scenes, Metaverse scenarios represent a more complex data format since they often contain one or more types of multimedia which influence the relevance of the scenario itself to a user query. Therefore, in this work, we create a novel task, called Text-to-Metaverse retrieval, which aims at modeling these aspects while also taking the cross-modal relations with the textual data into account. Since we are the first ones to tackle this problem, we also collect a dataset of 33000 Metaverses, each of which consists of a 3D scene enriched with multimedia content. Finally, we design and implement a deep learning framework based on contrastive learning, resulting in a thorough experimental setup.
PDF Accepted at 30th International Conference on Multimedia Modeling- MMM2024