人脸相关


2023-12-24 更新

FaceCoresetNet: Differentiable Coresets for Face Set Recognition

Authors:Gil Shapira, Yosi Keller

In set-based face recognition, we aim to compute the most discriminative descriptor from an unbounded set of images and videos showing a single person. A discriminative descriptor balances two policies when aggregating information from a given set. The first is a quality-based policy: emphasizing high-quality and down-weighting low-quality images. The second is a diversity-based policy: emphasizing unique images in the set and down-weighting multiple occurrences of similar images as found in video clips which can overwhelm the set representation. This work frames face-set representation as a differentiable coreset selection problem. Our model learns how to select a small coreset of the input set that balances quality and diversity policies using a learned metric parameterized by the face quality, optimized end-to-end. The selection process is a differentiable farthest-point sampling (FPS) realized by approximating the non-differentiable Argmax operation with differentiable sampling from the Gumbel-Softmax distribution of distances. The small coreset is later used as queries in a self and cross-attention architecture to enrich the descriptor with information from the whole set. Our model is order-invariant and linear in the input set size. We set a new SOTA to set face verification on the IJB-B and IJB-C datasets. Our code is publicly available.
PDF Accepted to AAAI-24

点此查看论文截图

X2-Softmax: Margin Adaptive Loss Function for Face Recognition

Authors:Jiamu Xu, Xiaoxiang Liu, Xinyuan Zhang, Yain-Whar Si, Xiaofan Li, Zheng Shi, Ke Wang, Xueyuan Gong

Learning the discriminative features of different faces is an important task in face recognition. By extracting face features in neural networks, it becomes easy to measure the similarity of different face images, which makes face recognition possible. To enhance the neural network’s face feature separability, incorporating an angular margin during training is common practice. State-of-the-art loss functions CosFace and ArcFace apply fixed margins between weights of classes to enhance the inter-class separation of face features. Since the distribution of samples in the training set is imbalanced, similarities between different identities are unequal. Therefore, using an inappropriately fixed angular margin may lead to the problem that the model is difficult to converge or the face features are not discriminative enough. It is more in line with our intuition that the margins are angular adaptive, which could increase with the angles between classes growing. In this paper, we propose a new angular margin loss named X2-Softmax. X2-Softmax loss has adaptive angular margins, which provide the margin that increases with the angle between different classes growing. The angular adaptive margin ensures model flexibility and effectively improves the effect of face recognition. We have trained the neural network with X2-Softmax loss on the MS1Mv3 dataset and tested it on several evaluation benchmarks to demonstrate the effectiveness and superiority of our loss function.
PDF

点此查看论文截图

Text-Guided Face Recognition using Multi-Granularity Cross-Modal Contrastive Learning

Authors:Md Mahedi Hasan, Shoaib Meraj Sami, Nasser Nasrabadi

State-of-the-art face recognition (FR) models often experience a significant performance drop when dealing with facial images in surveillance scenarios where images are in low quality and often corrupted with noise. Leveraging facial characteristics, such as freckles, scars, gender, and ethnicity, becomes highly beneficial in improving FR performance in such scenarios. In this paper, we introduce text-guided face recognition (TGFR) to analyze the impact of integrating facial attributes in the form of natural language descriptions. We hypothesize that adding semantic information into the loop can significantly improve the image understanding capability of an FR algorithm compared to other soft biometrics. However, learning a discriminative joint embedding within the multimodal space poses a considerable challenge due to the semantic gap in the unaligned image-text representations, along with the complexities arising from ambiguous and incoherent textual descriptions of the face. To address these challenges, we introduce a face-caption alignment module (FCAM), which incorporates cross-modal contrastive losses across multiple granularities to maximize the mutual information between local and global features of the face-caption pair. Within FCAM, we refine both facial and textual features for learning aligned and discriminative features. We also design a face-caption fusion module (FCFM) that applies fine-grained interactions and coarse-grained associations among cross-modal features. Through extensive experiments conducted on three face-caption datasets, proposed TGFR demonstrates remarkable improvements, particularly on low-quality images, over existing FR models and outperforms other related methods and benchmarks.
PDF Accepted at IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2024

点此查看论文截图

Cross-Age Contrastive Learning for Age-Invariant Face Recognition

Authors:Haoyi Wang, Victor Sanchez, Chang-Tsun Li

Cross-age facial images are typically challenging and expensive to collect, making noise-free age-oriented datasets relatively small compared to widely-used large-scale facial datasets. Additionally, in real scenarios, images of the same subject at different ages are usually hard or even impossible to obtain. Both of these factors lead to a lack of supervised data, which limits the versatility of supervised methods for age-invariant face recognition, a critical task in applications such as security and biometrics. To address this issue, we propose a novel semi-supervised learning approach named Cross-Age Contrastive Learning (CACon). Thanks to the identity-preserving power of recent face synthesis models, CACon introduces a new contrastive learning method that leverages an additional synthesized sample from the input image. We also propose a new loss function in association with CACon to perform contrastive learning on a triplet of samples. We demonstrate that our method not only achieves state-of-the-art performance in homogeneous-dataset experiments on several age-invariant face recognition benchmarks but also outperforms other methods by a large margin in cross-dataset experiments.
PDF ICASSP 2024

点此查看论文截图

Deep Learning Based Face Recognition Method using Siamese Network

Authors:Enoch Solomon, Abraham Woubie, Eyael Solomon Emiru

Achieving state-of-the-art results in face verification systems typically hinges on the availability of labeled face training data, a resource that often proves challenging to acquire in substantial quantities. In this research endeavor, we proposed employing Siamese networks for face recognition, eliminating the need for labeled face images. We achieve this by strategically leveraging negative samples alongside nearest neighbor counterparts, thereby establishing positive and negative pairs through an unsupervised methodology. The architectural framework adopts a VGG encoder, trained as a double branch siamese network. Our primary aim is to circumvent the necessity for labeled face image data, thus proposing the generation of training pairs in an entirely unsupervised manner. Positive training data are selected within a dataset based on their highest cosine similarity scores with a designated anchor, while negative training data are culled in a parallel fashion, though drawn from an alternate dataset. During training, the proposed siamese network conducts binary classification via cross-entropy loss. Subsequently, during the testing phase, we directly extract face verification scores from the network’s output layer. Experimental results reveal that the proposed unsupervised system delivers a performance on par with a similar but fully supervised baseline.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录