Vision Transformer


2023-12-13 更新

Open-vocabulary object 6D pose estimation

Authors:Jaime Corsetti, Davide Boscaini, Changjae Oh, Andrea Cavallaro, Fabio Poiesi

We introduce the new setting of open-vocabulary object 6D pose estimation, in which a textual prompt is used to specify the object of interest. In contrast to existing approaches, in our setting (i) the object of interest is specified solely through the textual prompt, (ii) no object model (e.g. CAD or video sequence) is required at inference, (iii) the object is imaged from two different viewpoints of two different scenes, and (iv) the object was not observed during the training phase. To operate in this setting, we introduce a novel approach that leverages a Vision-Language Model to segment the object of interest from two distinct scenes and to estimate its relative 6D pose. The key of our approach is a carefully devised strategy to fuse object-level information provided by the prompt with local image features, resulting in a feature space that can generalize to novel concepts. We validate our approach on a new benchmark based on two popular datasets, REAL275 and Toyota-Light, which collectively encompass 39 object instances appearing in four thousand image pairs. The results demonstrate that our approach outperforms both a well-established hand-crafted method and a recent deep learning-based baseline in estimating the relative 6D pose of objects in different scenes. Project page: https://jcorsetti.github.io/oryon/.
PDF Technical report. 21 pages, 15 figures, 6 tables. Updated website link

点此查看论文截图

A Layer-Wise Tokens-to-Token Transformer Network for Improved Historical Document Image Enhancement

Authors:Risab Biswas, Swalpa Kumar Roy, Umapada Pal

Document image enhancement is a fundamental and important stage for attaining the best performance in any document analysis assignment because there are many degradation situations that could harm document images, making it more difficult to recognize and analyze them. In this paper, we propose \textbf{T2T-BinFormer} which is a novel document binarization encoder-decoder architecture based on a Tokens-to-token vision transformer. Each image is divided into a set of tokens with a defined length using the ViT model, which is then applied several times to model the global relationship between the tokens. However, the conventional tokenization of input data does not adequately reflect the crucial local structure between adjacent pixels of the input image, which results in low efficiency. Instead of using a simple ViT and hard splitting of images for the document image enhancement task, we employed a progressive tokenization technique to capture this local information from an image to achieve more effective results. Experiments on various DIBCO and H-DIBCO benchmarks demonstrate that the proposed model outperforms the existing CNN and ViT-based state-of-the-art methods. In this research, the primary area of examination is the application of the proposed architecture to the task of document binarization. The source code will be made available at https://github.com/RisabBiswas/T2T-BinFormer.
PDF arXiv admin note: text overlap with arXiv:2312.03568

点此查看论文截图

An unsupervised approach towards promptable defect segmentation in laser-based additive manufacturing by Segment Anything

Authors:Israt Zarin Era, Imtiaz Ahmed, Zhichao Liu, Srinjoy Das

Foundation models are currently driving a paradigm shift in computer vision tasks for various fields including biology, astronomy, and robotics among others, leveraging user-generated prompts to enhance their performance. In the manufacturing domain, accurate image-based defect segmentation is imperative to ensure product quality and facilitate real-time process control. However, such tasks are often characterized by multiple challenges including the absence of labels and the requirement for low latency inference among others. To address these issues, we construct a framework for image segmentation using a state-of-the-art Vision Transformer (ViT) based Foundation model (Segment Anything Model) with a novel multi-point prompt generation scheme using unsupervised clustering. We apply our framework to perform real-time porosity segmentation in a case study of laser base powder bed fusion (L-PBF) and obtain high Dice Similarity Coefficients (DSC) without the necessity for any supervised fine-tuning in the model. Using such lightweight foundation model inference in conjunction with unsupervised prompt generation, we envision the construction of a real-time anomaly detection pipeline that has the potential to revolutionize the current laser-based additive manufacturing processes, thereby facilitating the shift towards Industry 4.0 and promoting defect-free production along with operational efficiency.
PDF 18 pages, 9 figures

点此查看论文截图

Large Language Models are Good Prompt Learners for Low-Shot Image Classification

Authors:Zhaoheng Zheng, Jingmin Wei, Xuefeng Hu, Haidong Zhu, Ram Nevatia

Low-shot image classification, where training images are limited or inaccessible, has benefited from recent progress on pre-trained vision-language (VL) models with strong generalizability, e.g. CLIP. Prompt learning methods built with VL models generate text features from the class names that only have confined class-specific information. Large Language Models (LLMs), with their vast encyclopedic knowledge, emerge as the complement. Thus, in this paper, we discuss the integration of LLMs to enhance pre-trained VL models, specifically on low-shot classification. However, the domain gap between language and vision blocks the direct application of LLMs. Thus, we propose LLaMP, Large Language Models as Prompt learners, that produces adaptive prompts for the CLIP text encoder, establishing it as the connecting bridge. Experiments show that, compared with other state-of-the-art prompt learning methods, LLaMP yields better performance on both zero-shot generalization and few-shot image classification, over a spectrum of 11 datasets.
PDF Technical Report

点此查看论文截图

Learning Generalizable Perceptual Representations for Data-Efficient No-Reference Image Quality Assessment

Authors:Suhas Srinath, Shankhanil Mitra, Shika Rao, Rajiv Soundararajan

No-reference (NR) image quality assessment (IQA) is an important tool in enhancing the user experience in diverse visual applications. A major drawback of state-of-the-art NR-IQA techniques is their reliance on a large number of human annotations to train models for a target IQA application. To mitigate this requirement, there is a need for unsupervised learning of generalizable quality representations that capture diverse distortions. We enable the learning of low-level quality features agnostic to distortion types by introducing a novel quality-aware contrastive loss. Further, we leverage the generalizability of vision-language models by fine-tuning one such model to extract high-level image quality information through relevant text prompts. The two sets of features are combined to effectively predict quality by training a simple regressor with very few samples on a target dataset. Additionally, we design zero-shot quality predictions from both pathways in a completely blind setting. Our experiments on diverse datasets encompassing various distortions show the generalizability of the features and their superior performance in the data-efficient and zero-shot settings. Code will be made available at https://github.com/suhas-srinath/GRepQ.
PDF Accepted to IEEE/CVF WACV 2024

点此查看论文截图

MIMIR: Masked Image Modeling for Mutual Information-based Adversarial Robustness

Authors:Xiaoyun Xu, Shujian Yu, Jingzheng Wu, Stjepan Picek

Vision Transformers (ViTs) achieve superior performance on various tasks compared to convolutional neural networks (CNNs), but ViTs are also vulnerable to adversarial attacks. Adversarial training is one of the most successful methods to build robust CNN models. Thus, recent works explored new methodologies for adversarial training of ViTs based on the differences between ViTs and CNNs, such as better training strategies, preventing attention from focusing on a single block, or discarding low-attention embeddings. However, these methods still follow the design of traditional supervised adversarial training, limiting the potential of adversarial training on ViTs. This paper proposes a novel defense method, MIMIR, which aims to build a different adversarial training methodology by utilizing Masked Image Modeling at pre-training. We create an autoencoder that accepts adversarial examples as input but takes the clean examples as the modeling target. Then, we create a mutual information (MI) penalty following the idea of the Information Bottleneck. Among the two information source inputs and corresponding adversarial perturbation, the perturbation information is eliminated due to the constraint of the modeling target. Next, we provide a theoretical analysis of MIMIR using the bounds of the MI penalty. We also design two adaptive attacks when the adversary is aware of the MIMIR defense and show that MIMIR still performs well. The experimental results show that MIMIR improves (natural and adversarial) accuracy on average by 4.19\% on CIFAR-10 and 5.52\% on ImageNet-1K, compared to baselines. On Tiny-ImageNet, we obtained improved natural accuracy of 2.99\% on average and comparable adversarial accuracy. Our code and trained models are publicly available\footnote{\url{https://anonymous.4open.science/r/MIMIR-5444/README.md}}.
PDF

点此查看论文截图

Multimodal Group Emotion Recognition In-the-wild Using Privacy-Compliant Features

Authors:Anderson Augusma, Dominique Vaufreydaz, Frédérique Letué

This paper explores privacy-compliant group-level emotion recognition ‘’in-the-wild’’ within the EmotiW Challenge 2023. Group-level emotion recognition can be useful in many fields including social robotics, conversational agents, e-coaching and learning analytics. This research imposes itself using only global features avoiding individual ones, i.e. all features that can be used to identify or track people in videos (facial landmarks, body poses, audio diarization, etc.). The proposed multimodal model is composed of a video and an audio branches with a cross-attention between modalities. The video branch is based on a fine-tuned ViT architecture. The audio branch extracts Mel-spectrograms and feed them through CNN blocks into a transformer encoder. Our training paradigm includes a generated synthetic dataset to increase the sensitivity of our model on facial expression within the image in a data-driven way. The extensive experiments show the significance of our methodology. Our privacy-compliant proposal performs fairly on the EmotiW challenge, with 79.24% and 75.13% of accuracy respectively on validation and test set for the best models. Noticeably, our findings highlight that it is possible to reach this accuracy level with privacy-compliant features using only 5 frames uniformly distributed on the video.
PDF

点此查看论文截图

From Static to Dynamic: Adapting Landmark-Aware Image Models for Facial Expression Recognition in Videos

Authors:Yin Chen, Jia Li, Shiguang Shan, Meng Wang, Richang Hong

Dynamic facial expression recognition (DFER) in the wild is still hindered by data limitations, e.g., insufficient quantity and diversity of pose, occlusion and illumination, as well as the inherent ambiguity of facial expressions. In contrast, static facial expression recognition (SFER) currently shows much higher performance and can benefit from more abundant high-quality training data. Moreover, the appearance features and dynamic dependencies of DFER remain largely unexplored. To tackle these challenges, we introduce a novel Static-to-Dynamic model (S2D) that leverages existing SFER knowledge and dynamic information implicitly encoded in extracted facial landmark-aware features, thereby significantly improving DFER performance. Firstly, we build and train an image model for SFER, which incorporates a standard Vision Transformer (ViT) and Multi-View Complementary Prompters (MCPs) only. Then, we obtain our video model (i.e., S2D), for DFER, by inserting Temporal-Modeling Adapters (TMAs) into the image model. MCPs enhance facial expression features with landmark-aware features inferred by an off-the-shelf facial landmark detector. And the TMAs capture and model the relationships of dynamic changes in facial expressions, effectively extending the pre-trained image model for videos. Notably, MCPs and TMAs only increase a fraction of trainable parameters (less than +10\%) to the original image model. Moreover, we present a novel Emotion-Anchors (i.e., reference samples for each emotion category) based Self-Distillation Loss to reduce the detrimental influence of ambiguous emotion labels, further enhancing our S2D. Experiments conducted on popular SFER and DFER datasets show that we achieve the state of the art.
PDF Code will be available at: https://github.com/FER-LMC/S2D

点此查看论文截图

RepViT-SAM: Towards Real-Time Segmenting Anything

Authors:Ao Wang, Hui Chen, Zijia Lin, Jungong Han, Guiguang Ding

Segment Anything Model (SAM) has shown impressive zero-shot transfer performance for various computer vision tasks recently. However, its heavy computation costs remain daunting for practical applications. MobileSAM proposes to replace the heavyweight image encoder in SAM with TinyViT by employing distillation, which results in a significant reduction in computational requirements. However, its deployment on resource-constrained mobile devices still encounters challenges due to the substantial memory and computational overhead caused by self-attention mechanisms. Recently, RepViT achieves the state-of-the-art performance and latency trade-off on mobile devices by incorporating efficient architectural designs of ViTs into CNNs. Here, to achieve real-time segmenting anything on mobile devices, following MobileSAM, we replace the heavyweight image encoder in SAM with RepViT model, ending up with the RepViT-SAM model. Extensive experiments show that RepViT-SAM can enjoy significantly better zero-shot transfer capability than MobileSAM, along with nearly $10\times$ faster inference speed. The code and models are available at \url{https://github.com/THU-MIG/RepViT}.
PDF 5 pages, 2 figures

点此查看论文截图

Textual Prompt Guided Image Restoration

Authors:Qiuhai Yan, Aiwen Jiang, Kang Chen, Long Peng, Qiaosi Yi, Chunjie Zhang

Image restoration has always been a cutting-edge topic in the academic and industrial fields of computer vision. Since degradation signals are often random and diverse, “all-in-one” models that can do blind image restoration have been concerned in recent years. Early works require training specialized headers and tails to handle each degradation of concern, which are manually cumbersome. Recent works focus on learning visual prompts from data distribution to identify degradation type. However, the prompts employed in most of models are non-text, lacking sufficient emphasis on the importance of human-in-the-loop. In this paper, an effective textual prompt guided image restoration model has been proposed. In this model, task-specific BERT is fine-tuned to accurately understand user’s instructions and generating textual prompt guidance. Depth-wise multi-head transposed attentions and gated convolution modules are designed to bridge the gap between textual prompts and visual features. The proposed model has innovatively introduced semantic prompts into low-level visual domain. It highlights the potential to provide a natural, precise, and controllable way to perform image restoration tasks. Extensive experiments have been done on public denoising, dehazing and deraining datasets. The experiment results demonstrate that, compared with popular state-of-the-art methods, the proposed model can obtain much more superior performance, achieving accurate recognition and removal of degradation without increasing model’s complexity. Related source codes and data will be publicly available on github site https://github.com/MoTong-AI-studio/TextPromptIR.
PDF 12 pages, 10figures

点此查看论文截图

EdgeSAM: Prompt-In-the-Loop Distillation for On-Device Deployment of SAM

Authors:Chong Zhou, Xiangtai Li, Chen Change Loy, Bo Dai

This paper presents EdgeSAM, an accelerated variant of the Segment Anything Model (SAM), optimized for efficient execution on edge devices with minimal compromise in performance. Our approach involves distilling the original ViT-based SAM image encoder into a purely CNN-based architecture, better suited for edge devices. We carefully benchmark various distillation strategies and demonstrate that task-agnostic encoder distillation fails to capture the full knowledge embodied in SAM. To overcome this bottleneck, we include both the prompt encoder and mask decoder in the distillation process, with box and point prompts in the loop, so that the distilled model can accurately capture the intricate dynamics between user input and mask generation. To mitigate dataset bias issues stemming from point prompt distillation, we incorporate a lightweight module within the encoder. EdgeSAM achieves a 40-fold speed increase compared to the original SAM, and it also outperforms MobileSAM, being 14 times as fast when deployed on edge devices while enhancing the mIoUs on COCO and LVIS by 2.3 and 3.2 respectively. It is also the first SAM variant that can run at over 30 FPS on an iPhone 14. Code and models are available at https://github.com/chongzhou96/EdgeSAM.
PDF Project page: https://mmlab-ntu.github.io/project/edgesam/

点此查看论文截图

InstructAny2Pix: Flexible Visual Editing via Multimodal Instruction Following

Authors:Shufan Li, Harkanwar Singh, Aditya Grover

The ability to provide fine-grained control for generating and editing visual imagery has profound implications for computer vision and its applications. Previous works have explored extending controllability in two directions: instruction tuning with text-based prompts and multi-modal conditioning. However, these works make one or more unnatural assumptions on the number and/or type of modality inputs used to express controllability. We propose InstructAny2Pix, a flexible multi-modal instruction-following system that enables users to edit an input image using instructions involving audio, images, and text. InstructAny2Pix consists of three building blocks that facilitate this capability: a multi-modal encoder that encodes different modalities such as images and audio into a unified latent space, a diffusion model that learns to decode representations in this latent space into images, and a multi-modal LLM that can understand instructions involving multiple images and audio pieces and generate a conditional embedding of the desired output, which can be used by the diffusion decoder. Additionally, to facilitate training efficiency and improve generation quality, we include an additional refinement prior module that enhances the visual quality of LLM outputs. These designs are critical to the performance of our system. We demonstrate that our system can perform a series of novel instruction-guided editing tasks. The code is available at https://github.com/jacklishufan/InstructAny2Pix.git
PDF 17 pages, 16 figures

点此查看论文截图

Benchmarking Deep Learning Classifiers for SAR Automatic Target Recognition

Authors:Jacob Fein-Ashley, Tian Ye, Rajgopal Kannan, Viktor Prasanna, Carl Busart

Synthetic Aperture Radar SAR Automatic Target Recognition ATR is a key technique of remote-sensing image recognition which can be supported by deep neural networks The existing works of SAR ATR mostly focus on improving the accuracy of the target recognition while ignoring the systems performance in terms of speed and storage which is critical to real-world applications of SAR ATR For decision-makers aiming to identify a proper deep learning model to deploy in a SAR ATR system it is important to understand the performance of different candidate deep learning models and determine the best model accordingly This paper comprehensively benchmarks several advanced deep learning models for SAR ATR with multiple distinct SAR imagery datasets Specifically we train and test five SAR image classifiers based on Residual Neural Networks ResNet18 ResNet34 ResNet50 Graph Neural Network GNN and Vision Transformer for Small-Sized Datasets (SS-ViT) We select three datasets MSTAR GBSAR and SynthWakeSAR that offer heterogeneity We evaluate and compare the five classifiers concerning their classification accuracy runtime performance in terms of inference throughput and analytical performance in terms of number of parameters number of layers model size and number of operations Experimental results show that the GNN classifier outperforms with respect to throughput and latency However it is also shown that no clear model winner emerges from all of our chosen metrics and a one model rules all case is doubtful in the domain of SAR ATR
PDF 6 Pages

点此查看论文截图

Exploring Plain ViT Reconstruction for Multi-class Unsupervised Anomaly Detection

Authors:Jiangning Zhang, Xuhai Chen, Yabiao Wang, Chengjie Wang, Yong Liu, Xiangtai Li, Ming-Hsuan Yang, Dacheng Tao

This work studies the recently proposed challenging and practical Multi-class Unsupervised Anomaly Detection (MUAD) task, which only requires normal images for training while simultaneously testing both normal/anomaly images for multiple classes. Existing reconstruction-based methods typically adopt pyramid networks as encoders/decoders to obtain multi-resolution features, accompanied by elaborate sub-modules with heavier handcraft engineering designs for more precise localization. In contrast, a plain Vision Transformer (ViT) with simple architecture has been shown effective in multiple domains, which is simpler, more effective, and elegant. Following this spirit, this paper explores plain ViT architecture for MUAD. Specifically, we abstract a Meta-AD concept by inducing current reconstruction-based methods. Then, we instantiate a novel and elegant plain ViT-based symmetric ViTAD structure, effectively designed step by step from three macro and four micro perspectives. In addition, this paper reveals several interesting findings for further exploration. Finally, we propose a comprehensive and fair evaluation benchmark on eight metrics for the MUAD task. Based on a naive training recipe, ViTAD achieves state-of-the-art (SoTA) results and efficiency on the MVTec AD and VisA datasets without bells and whistles, obtaining 85.4 mAD that surpasses SoTA UniAD by +3.0, and only requiring 1.1 hours and 2.3G GPU memory to complete model training by a single V100 GPU. Source code, models, and more results are available at https://zhangzjn.github.io/projects/ViTAD.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录