检测/分割/跟踪


2023-12-13 更新

DyRA: Dynamic Resolution Adjustment for Scale-robust Object Detection

Authors:Daeun Seo, Hoeseok Yang, Hyungshin Kim

In object detection, achieving constant accuracy is challenging due to the variability of object sizes. One possible solution to this problem is to optimize the input resolution, known as a multi-resolution strategy. Previous approaches for optimizing resolution are often based on pre-defined resolutions or a dynamic neural network, but there is a lack of study for run-time resolution optimization for existing architecture. In this paper, we propose an adaptive resolution scaling network called DyRA, which comprises convolutions and transformer encoder blocks, for existing detectors. Our DyRA returns a scale factor from an input image, which enables instance-specific scaling. This network is jointly trained with detectors with specially designed loss functions, namely ParetoScaleLoss and BalanceLoss. The ParetoScaleLoss produces an adaptive scale factor from the image, while the BalanceLoss optimizes the scale factor according to localization power for the dataset. The loss function is designed to minimize accuracy drop about the contrasting objective of small and large objects. Our experiments on COCO, RetinaNet, Faster-RCNN, FCOS, and Mask-RCNN achieved 1.3%, 1.1%, 1.3%, and 0.8% accuracy improvement than a multi-resolution baseline with solely resolution adjustment. The code is available at https://github.com/DaEunFullGrace/DyRA.git.
PDF

点此查看论文截图

ShareCMP: Polarization-Aware RGB-P Semantic Segmentation

Authors:Zhuoyan Liu, Bo Wang, Lizhi Wang, Chenyu Mao, Ye Li

Multimodal semantic segmentation is developing rapidly, but the modality of RGB-Polarization remains underexplored. To delve into this problem, we construct a UPLight RGB-P segmentation benchmark with 12 typical underwater semantic classes. In this work, we design the ShareCMP, an RGB-P semantic segmentation framework with a shared dual-branch architecture, which reduces the number of parameters by about 26-33% compared to previous dual-branch models. It encompasses a Polarization Generate Attention (PGA) module designed to generate polarization modal images with richer polarization properties for the encoder. In addition, we introduce the Class Polarization-Aware Loss (CPALoss) to improve the learning and understanding of the encoder for polarization modal information and to optimize the PGA module. With extensive experiments on a total of three RGB-P benchmarks, our ShareCMP achieves state-of-the-art performance in mIoU with fewer parameters on the UPLight (92.45(+0.32)%), ZJU (92.7(+0.1)%), and MCubeS (50.99(+1.51)%) datasets compared to the previous best methods. The code is available at https://github.com/LEFTeyex/ShareCMP.
PDF 10 pages, 5 figures

点此查看论文截图

Foundation Model Assisted Weakly Supervised Semantic Segmentation

Authors:Xiaobo Yang, Xiaojin Gong

This work aims to leverage pre-trained foundation models, such as contrastive language-image pre-training (CLIP) and segment anything model (SAM), to address weakly supervised semantic segmentation (WSSS) using image-level labels. To this end, we propose a coarse-to-fine framework based on CLIP and SAM for generating high-quality segmentation seeds. Specifically, we construct an image classification task and a seed segmentation task, which are jointly performed by CLIP with frozen weights and two sets of learnable task-specific prompts. A SAM-based seeding (SAMS) module is designed and applied to each task to produce either coarse or fine seed maps. Moreover, we design a multi-label contrastive loss supervised by image-level labels and a CAM activation loss supervised by the generated coarse seed map. These losses are used to learn the prompts, which are the only parts need to be learned in our framework. Once the prompts are learned, we input each image along with the learned segmentation-specific prompts into CLIP and the SAMS module to produce high-quality segmentation seeds. These seeds serve as pseudo labels to train an off-the-shelf segmentation network like other two-stage WSSS methods. Experiments show that our method achieves the state-of-the-art performance on PASCAL VOC 2012 and competitive results on MS COCO 2014. Code is available at https://github.com/HAL-42/FMA-WSSS.git.
PDF

点此查看论文截图

Novel class discovery meets foundation models for 3D semantic segmentation

Authors:Luigi Riz, Cristiano Saltori, Yiming Wang, Elisa Ricci, Fabio Poiesi

The task of Novel Class Discovery (NCD) in semantic segmentation entails training a model able to accurately segment unlabelled (novel) classes, relying on the available supervision from annotated (base) classes. Although extensively investigated in 2D image data, the extension of the NCD task to the domain of 3D point clouds represents a pioneering effort, characterized by assumptions and challenges that are not present in the 2D case. This paper represents an advancement in the analysis of point cloud data in four directions. Firstly, it introduces the novel task of NCD for point cloud semantic segmentation. Secondly, it demonstrates that directly transposing the only existing NCD method for 2D image semantic segmentation to 3D data yields suboptimal results. Thirdly, a new NCD approach based on online clustering, uncertainty estimation, and semantic distillation is presented. Lastly, a novel evaluation protocol is proposed to rigorously assess the performance of NCD in point cloud semantic segmentation. Through comprehensive evaluations on the SemanticKITTI, SemanticPOSS, and S3DIS datasets, the paper demonstrates substantial superiority of the proposed method over the considered baselines.
PDF arXiv admin note: substantial text overlap with arXiv:2303.11610

点此查看论文截图

Residual Graph Convolutional Network for Bird’s-Eye-View Semantic Segmentation

Authors:Qiuxiao Chen, Xiaojun Qi

Retrieving spatial information and understanding the semantic information of the surroundings are important for Bird’s-Eye-View (BEV) semantic segmentation. In the application of autonomous driving, autonomous vehicles need to be aware of their surroundings to drive safely. However, current BEV semantic segmentation techniques, deep Convolutional Neural Networks (CNNs) and transformers, have difficulties in obtaining the global semantic relationships of the surroundings at the early layers of the network. In this paper, we propose to incorporate a novel Residual Graph Convolutional (RGC) module in deep CNNs to acquire both the global information and the region-level semantic relationship in the multi-view image domain. Specifically, the RGC module employs a non-overlapping graph space projection to efficiently project the complete BEV information into graph space. It then builds interconnected spatial and channel graphs to extract spatial information between each node and channel information within each node (i.e., extract contextual relationships of the global features). Furthermore, it uses a downsample residual process to enhance the coordinate feature reuse to maintain the global information. The segmentation data augmentation and alignment module helps to simultaneously augment and align BEV features and ground truth to geometrically preserve their alignment to achieve better segmentation results. Our experimental results on the nuScenes benchmark dataset demonstrate that the RGC network outperforms four state-of-the-art networks and its four variants in terms of IoU and mIoU. The proposed RGC network achieves a higher mIoU of 3.1% than the best state-of-the-art network, BEVFusion. Code and models will be released.
PDF 8 pages, 5 figures, this paper has been accepted by and will be presented at the WACV 2024

点此查看论文截图

Augmentation-Free Dense Contrastive Knowledge Distillation for Efficient Semantic Segmentation

Authors:Jiawei Fan, Chao Li, Xiaolong Liu, Meina Song, Anbang Yao

In recent years, knowledge distillation methods based on contrastive learning have achieved promising results on image classification and object detection tasks. However, in this line of research, we note that less attention is paid to semantic segmentation. Existing methods heavily rely on data augmentation and memory buffer, which entail high computational resource demands when applying them to handle semantic segmentation that requires to preserve high-resolution feature maps for making dense pixel-wise predictions. In order to address this problem, we present Augmentation-free Dense Contrastive Knowledge Distillation (Af-DCD), a new contrastive distillation learning paradigm to train compact and accurate deep neural networks for semantic segmentation applications. Af-DCD leverages a masked feature mimicking strategy, and formulates a novel contrastive learning loss via taking advantage of tactful feature partitions across both channel and spatial dimensions, allowing to effectively transfer dense and structured local knowledge learnt by the teacher model to a target student model while maintaining training efficiency. Extensive experiments on five mainstream benchmarks with various teacher-student network pairs demonstrate the effectiveness of our approach. For instance, the DeepLabV3-Res18|DeepLabV3-MBV2 model trained by Af-DCD reaches 77.03%|76.38% mIOU on Cityscapes dataset when choosing DeepLabV3-Res101 as the teacher, setting new performance records. Besides that, Af-DCD achieves an absolute mIOU improvement of 3.26%|3.04%|2.75%|2.30%|1.42% compared with individually trained counterpart on Cityscapes|Pascal VOC|Camvid|ADE20K|COCO-Stuff-164K. Code is available at https://github.com/OSVAI/Af-DCD
PDF The paper of Af-DCD is accepted to NeurIPS 2023. Code and models are available at https://github.com/OSVAI/Af-DCD

点此查看论文截图

Stronger, Fewer, & Superior: Harnessing Vision Foundation Models for Domain Generalized Semantic Segmentation

Authors:Zhixiang Wei, Lin Chen, Yi Jin, Xiaoxiao Ma, Tianle Liu, Pengyang Lin, Ben Wang, Huaian Chen, Jinjin Zheng

In this paper, we first assess and harness various Vision Foundation Models (VFMs) in the context of Domain Generalized Semantic Segmentation (DGSS). Driven by the motivation that Leveraging Stronger pre-trained models and Fewer trainable parameters for Superior generalizability, we introduce a robust fine-tuning approach, namely Rein, to parameter-efficiently harness VFMs for DGSS. Built upon a set of trainable tokens, each linked to distinct instances, Rein precisely refines and forwards the feature maps from each layer to the next layer within the backbone. This process produces diverse refinements for different categories within a single image. With fewer trainable parameters, Rein efficiently fine-tunes VFMs for DGSS tasks, surprisingly surpassing full parameter fine-tuning. Extensive experiments across various settings demonstrate that Rein significantly outperforms state-of-the-art methods. Remarkably, with just an extra 1% of trainable parameters within the frozen backbone, Rein achieves a mIoU of 68.1% on the Cityscapes, without accessing any real urban-scene datasets.
PDF

点此查看论文截图

Self-Guided Open-Vocabulary Semantic Segmentation

Authors:Osman Ülger, Maksymilian Kulicki, Yuki Asano, Martin R. Oswald

Vision-Language Models (VLMs) have emerged as promising tools for open-ended image understanding tasks, including open vocabulary segmentation. Yet, direct application of such VLMs to segmentation is non-trivial, since VLMs are trained with image-text pairs and naturally lack pixel-level granularity. Recent works have made advancements in bridging this gap, often by leveraging the shared image-text space in which the image and a provided text prompt are represented. In this paper, we challenge the capabilities of VLMs further and tackle open-vocabulary segmentation without the need for any textual input. To this end, we propose a novel Self-Guided Semantic Segmentation (Self-Seg) framework. Self-Seg is capable of automatically detecting relevant class names from clustered BLIP embeddings and using these for accurate semantic segmentation. In addition, we propose an LLM-based Open-Vocabulary Evaluator (LOVE) to effectively assess predicted open-vocabulary class names. We achieve state-of-the-art results on Pascal VOC, ADE20K and CityScapes for open-vocabulary segmentation without given class names, as well as competitive performance with methods where class names are given. All code and data will be released.
PDF

点此查看论文截图

Open World Object Detection in the Era of Foundation Models

Authors:Orr Zohar, Alejandro Lozano, Shelly Goel, Serena Yeung, Kuan-Chieh Wang

Object detection is integral to a bevy of real-world applications, from robotics to medical image analysis. To be used reliably in such applications, models must be capable of handling unexpected - or novel - objects. The open world object detection (OWD) paradigm addresses this challenge by enabling models to detect unknown objects and learn discovered ones incrementally. However, OWD method development is hindered due to the stringent benchmark and task definitions. These definitions effectively prohibit foundation models. Here, we aim to relax these definitions and investigate the utilization of pre-trained foundation models in OWD. First, we show that existing benchmarks are insufficient in evaluating methods that utilize foundation models, as even naive integration methods nearly saturate these benchmarks. This result motivated us to curate a new and challenging benchmark for these models. Therefore, we introduce a new benchmark that includes five real-world application-driven datasets, including challenging domains such as aerial and surgical images, and establish baselines. We exploit the inherent connection between classes in application-driven datasets and introduce a novel method, Foundation Object detection Model for the Open world, or FOMO, which identifies unknown objects based on their shared attributes with the base known objects. FOMO has ~3x unknown object mAP compared to baselines on our benchmark. However, our results indicate a significant place for improvement - suggesting a great research opportunity in further scaling object detection methods to real-world domains. Our code and benchmark are available at https://orrzohar.github.io/projects/fomo/.
PDF

点此查看论文截图

U-MixFormer: UNet-like Transformer with Mix-Attention for Efficient Semantic Segmentation

Authors:Seul-Ki Yeom, Julian von Klitzing

Semantic segmentation has witnessed remarkable advancements with the adaptation of the Transformer architecture. Parallel to the strides made by the Transformer, CNN-based U-Net has seen significant progress, especially in high-resolution medical imaging and remote sensing. This dual success inspired us to merge the strengths of both, leading to the inception of a U-Net-based vision transformer decoder tailored for efficient contextual encoding. Here, we propose a novel transformer decoder, U-MixFormer, built upon the U-Net structure, designed for efficient semantic segmentation. Our approach distinguishes itself from the previous transformer methods by leveraging lateral connections between the encoder and decoder stages as feature queries for the attention modules, apart from the traditional reliance on skip connections. Moreover, we innovatively mix hierarchical feature maps from various encoder and decoder stages to form a unified representation for keys and values, giving rise to our unique mix-attention module. Our approach demonstrates state-of-the-art performance across various configurations. Extensive experiments show that U-MixFormer outperforms SegFormer, FeedFormer, and SegNeXt by a large margin. For example, U-MixFormer-B0 surpasses SegFormer-B0 and FeedFormer-B0 with 3.8% and 2.0% higher mIoU and 27.3% and 21.8% less computation and outperforms SegNext with 3.3% higher mIoU with MSCAN-T encoder on ADE20K. Code available at https://github.com/julian-klitzing/u-mixformer.
PDF 8 Pages, 6 Tables, 6 Figures

点此查看论文截图

Transferring CLIP’s Knowledge into Zero-Shot Point Cloud Semantic Segmentation

Authors:Yuanbin Wang, Shaofei Huang, Yulu Gao, Zhen Wang, Rui Wang, Kehua Sheng, Bo Zhang, Si Liu

Traditional 3D segmentation methods can only recognize a fixed range of classes that appear in the training set, which limits their application in real-world scenarios due to the lack of generalization ability. Large-scale visual-language pre-trained models, such as CLIP, have shown their generalization ability in the zero-shot 2D vision tasks, but are still unable to be applied to 3D semantic segmentation directly. In this work, we focus on zero-shot point cloud semantic segmentation and propose a simple yet effective baseline to transfer the visual-linguistic knowledge implied in CLIP to point cloud encoder at both feature and output levels. Both feature-level and output-level alignments are conducted between 2D and 3D encoders for effective knowledge transfer. Concretely, a Multi-granularity Cross-modal Feature Alignment (MCFA) module is proposed to align 2D and 3D features from global semantic and local position perspectives for feature-level alignment. For the output level, per-pixel pseudo labels of unseen classes are extracted using the pre-trained CLIP model as supervision for the 3D segmentation model to mimic the behavior of the CLIP image encoder. Extensive experiments are conducted on two popular benchmarks of point cloud segmentation. Our method outperforms significantly previous state-of-the-art methods under zero-shot setting (+29.2% mIoU on SemanticKITTI and 31.8% mIoU on nuScenes), and further achieves promising results in the annotation-free point cloud semantic segmentation setting, showing its great potential for label-efficient learning.
PDF

点此查看论文截图

Weakly Supervised 3D Object Detection via Multi-Level Visual Guidance

Authors:Kuan-Chih Huang, Yi-Hsuan Tsai, Ming-Hsuan Yang

Weakly supervised 3D object detection aims to learn a 3D detector with lower annotation cost, e.g., 2D labels. Unlike prior work which still relies on few accurate 3D annotations, we propose a framework to study how to leverage constraints between 2D and 3D domains without requiring any 3D labels. Specifically, we employ visual data from three perspectives to establish connections between 2D and 3D domains. First, we design a feature-level constraint to align LiDAR and image features based on object-aware regions. Second, the output-level constraint is developed to enforce the overlap between 2D and projected 3D box estimations. Finally, the training-level constraint is utilized by producing accurate and consistent 3D pseudo-labels that align with the visual data. We conduct extensive experiments on the KITTI dataset to validate the effectiveness of the proposed three constraints. Without using any 3D labels, our method achieves favorable performance against state-of-the-art approaches and is competitive with the method that uses 500-frame 3D annotations. Code and models will be made publicly available at https://github.com/kuanchihhuang/VG-W3D.
PDF Project page: https://github.com/kuanchihhuang/VG-W3D

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录