强化学习


2023-12-13 更新

Privacy Preserving Multi-Agent Reinforcement Learning in Supply Chains

Authors:Ananta Mukherjee, Peeyush Kumar, Boling Yang, Nishanth Chandran, Divya Gupta

This paper addresses privacy concerns in multi-agent reinforcement learning (MARL), specifically within the context of supply chains where individual strategic data must remain confidential. Organizations within the supply chain are modeled as agents, each seeking to optimize their own objectives while interacting with others. As each organization’s strategy is contingent on neighboring strategies, maintaining privacy of state and action-related information is crucial. To tackle this challenge, we propose a game-theoretic, privacy-preserving mechanism, utilizing a secure multi-party computation (MPC) framework in MARL settings. Our major contribution is the successful implementation of a secure MPC framework, SecFloat on EzPC, to solve this problem. However, simply implementing policy gradient methods such as MADDPG operations using SecFloat, while conceptually feasible, would be programmatically intractable. To overcome this hurdle, we devise a novel approach that breaks down the forward and backward pass of the neural network into elementary operations compatible with SecFloat , creating efficient and secure versions of the MADDPG algorithm. Furthermore, we present a learning mechanism that carries out floating point operations in a privacy-preserving manner, an important feature for successful learning in MARL framework. Experiments reveal that there is on average 68.19% less supply chain wastage in 2 PC compared to no data share, while also giving on average 42.27% better average cumulative revenue for each player. This work paves the way for practical, privacy-preserving MARL, promising significant improvements in secure computation within supply chain contexts and broadly.
PDF

点此查看论文截图

The Generalization Gap in Offline Reinforcement Learning

Authors:Ishita Mediratta, Qingfei You, Minqi Jiang, Roberta Raileanu

Despite recent progress in offline learning, these methods are still trained and tested on the same environment. In this paper, we compare the generalization abilities of widely used online and offline learning methods such as online reinforcement learning (RL), offline RL, sequence modeling, and behavioral cloning. Our experiments show that offline learning algorithms perform worse on new environments than online learning ones. We also introduce the first benchmark for evaluating generalization in offline learning, collecting datasets of varying sizes and skill-levels from Procgen (2D video games) and WebShop (e-commerce websites). The datasets contain trajectories for a limited number of game levels or natural language instructions and at test time, the agent has to generalize to new levels or instructions. Our experiments reveal that existing offline learning algorithms struggle to match the performance of online RL on both train and test environments. Behavioral cloning is a strong baseline, outperforming state-of-the-art offline RL and sequence modeling approaches when trained on data from multiple environments and tested on new ones. Finally, we find that increasing the diversity of the data, rather than its size, improves performance on new environments for all offline learning algorithms. Our study demonstrates the limited generalization of current offline learning algorithms highlighting the need for more research in this area.
PDF First two authors contributed equally

点此查看论文截图

Graph-based Prediction and Planning Policy Network (GP3Net) for scalable self-driving in dynamic environments using Deep Reinforcement Learning

Authors:Jayabrata Chowdhury, Venkataramanan Shivaraman, Suresh Sundaram, P B Sujit

Recent advancements in motion planning for Autonomous Vehicles (AVs) show great promise in using expert driver behaviors in non-stationary driving environments. However, learning only through expert drivers needs more generalizability to recover from domain shifts and near-failure scenarios due to the dynamic behavior of traffic participants and weather conditions. A deep Graph-based Prediction and Planning Policy Network (GP3Net) framework is proposed for non-stationary environments that encodes the interactions between traffic participants with contextual information and provides a decision for safe maneuver for AV. A spatio-temporal graph models the interactions between traffic participants for predicting the future trajectories of those participants. The predicted trajectories are utilized to generate a future occupancy map around the AV with uncertainties embedded to anticipate the evolving non-stationary driving environments. Then the contextual information and future occupancy maps are input to the policy network of the GP3Net framework and trained using Proximal Policy Optimization (PPO) algorithm. The proposed GP3Net performance is evaluated on standard CARLA benchmarking scenarios with domain shifts of traffic patterns (urban, highway, and mixed). The results show that the GP3Net outperforms previous state-of-the-art imitation learning-based planning models for different towns. Further, in unseen new weather conditions, GP3Net completes the desired route with fewer traffic infractions. Finally, the results emphasize the advantage of including the prediction module to enhance safety measures in non-stationary environments.
PDF

点此查看论文截图

Efficient Sparse-Reward Goal-Conditioned Reinforcement Learning with a High Replay Ratio and Regularization

Authors:Takuya Hiraoka

Reinforcement learning (RL) methods with a high replay ratio (RR) and regularization have gained interest due to their superior sample efficiency. However, these methods have mainly been developed for dense-reward tasks. In this paper, we aim to extend these RL methods to sparse-reward goal-conditioned tasks. We use Randomized Ensemble Double Q-learning (REDQ) (Chen et al., 2021), an RL method with a high RR and regularization. To apply REDQ to sparse-reward goal-conditioned tasks, we make the following modifications to it: (i) using hindsight experience replay and (ii) bounding target Q-values. We evaluate REDQ with these modifications on 12 sparse-reward goal-conditioned tasks of Robotics (Plappert et al., 2018), and show that it achieves about $2 \times$ better sample efficiency than previous state-of-the-art (SoTA) RL methods. Furthermore, we reconsider the necessity of specific components of REDQ and simplify it by removing unnecessary ones. The simplified REDQ with our modifications achieves $\sim 8 \times$ better sample efficiency than the SoTA methods in 4 Fetch tasks of Robotics.
PDF Source code: https://github.com/TakuyaHiraoka/Efficient-SRGC-RL-with-a-High-RR-and-Regularization Demo video: https://drive.google.com/file/d/1UHd7JVPCwFLNFhy1QcycQfwU_nll_yII/view?usp=drive_link

点此查看论文截图

No Prior Mask: Eliminate Redundant Action for Deep Reinforcement Learning

Authors:Dianyu Zhong, Yiqin Yang, Qianchuan Zhao

The large action space is one fundamental obstacle to deploying Reinforcement Learning methods in the real world. The numerous redundant actions will cause the agents to make repeated or invalid attempts, even leading to task failure. Although current algorithms conduct some initial explorations for this issue, they either suffer from rule-based systems or depend on expert demonstrations, which significantly limits their applicability in many real-world settings. In this work, we examine the theoretical analysis of what action can be eliminated in policy optimization and propose a novel redundant action filtering mechanism. Unlike other works, our method constructs the similarity factor by estimating the distance between the state distributions, which requires no prior knowledge. In addition, we combine the modified inverse model to avoid extensive computation in high-dimensional state space. We reveal the underlying structure of action spaces and propose a simple yet efficient redundant action filtering mechanism named No Prior Mask (NPM) based on the above techniques. We show the superior performance of our method by conducting extensive experiments on high-dimensional, pixel-input, and stochastic problems with various action redundancy. Our code is public online at https://github.com/zhongdy15/npm.
PDF

点此查看论文截图

Reward Certification for Policy Smoothed Reinforcement Learning

Authors:Ronghui Mu, Leandro Soriano Marcolino, Tianle Zhang, Yanghao Zhang, Xiaowei Huang, Wenjie Ruan

Reinforcement Learning (RL) has achieved remarkable success in safety-critical areas, but it can be weakened by adversarial attacks. Recent studies have introduced “smoothed policies” in order to enhance its robustness. Yet, it is still challenging to establish a provable guarantee to certify the bound of its total reward. Prior methods relied primarily on computing bounds using Lipschitz continuity or calculating the probability of cumulative reward above specific thresholds. However, these techniques are only suited for continuous perturbations on the RL agent’s observations and are restricted to perturbations bounded by the $l_2$-norm. To address these limitations, this paper proposes a general black-box certification method capable of directly certifying the cumulative reward of the smoothed policy under various $l_p$-norm bounded perturbations. Furthermore, we extend our methodology to certify perturbations on action spaces. Our approach leverages f-divergence to measure the distinction between the original distribution and the perturbed distribution, subsequently determining the certification bound by solving a convex optimisation problem. We provide a comprehensive theoretical analysis and run sufficient experiments in multiple environments. Our results show that our method not only improves the certified lower bound of mean cumulative reward but also demonstrates better efficiency than state-of-the-art techniques.
PDF This paper will be presented in AAAI2024

点此查看论文截图

Noise Distribution Decomposition based Multi-Agent Distributional Reinforcement Learning

Authors:Wei Geng, Baidi Xiao, Rongpeng Li, Ning Wei, Dong Wang, Zhifeng Zhao

Generally, Reinforcement Learning (RL) agent updates its policy by repetitively interacting with the environment, contingent on the received rewards to observed states and undertaken actions. However, the environmental disturbance, commonly leading to noisy observations (e.g., rewards and states), could significantly shape the performance of agent. Furthermore, the learning performance of Multi-Agent Reinforcement Learning (MARL) is more susceptible to noise due to the interference among intelligent agents. Therefore, it becomes imperative to revolutionize the design of MARL, so as to capably ameliorate the annoying impact of noisy rewards. In this paper, we propose a novel decomposition-based multi-agent distributional RL method by approximating the globally shared noisy reward by a Gaussian mixture model (GMM) and decomposing it into the combination of individual distributional local rewards, with which each agent can be updated locally through distributional RL. Moreover, a diffusion model (DM) is leveraged for reward generation in order to mitigate the issue of costly interaction expenditure for learning distributions. Furthermore, the optimality of the distribution decomposition is theoretically validated, while the design of loss function is carefully calibrated to avoid the decomposition ambiguity. We also verify the effectiveness of the proposed method through extensive simulation experiments with noisy rewards. Besides, different risk-sensitive policies are evaluated in order to demonstrate the superiority of distributional RL in different MARL tasks.
PDF

点此查看论文截图

Beyond Expected Return: Accounting for Policy Reproducibility when Evaluating Reinforcement Learning Algorithms

Authors:Manon Flageat, Bryan Lim, Antoine Cully

Many applications in Reinforcement Learning (RL) usually have noise or stochasticity present in the environment. Beyond their impact on learning, these uncertainties lead the exact same policy to perform differently, i.e. yield different return, from one roll-out to another. Common evaluation procedures in RL summarise the consequent return distributions using solely the expected return, which does not account for the spread of the distribution. Our work defines this spread as the policy reproducibility: the ability of a policy to obtain similar performance when rolled out many times, a crucial property in some real-world applications. We highlight that existing procedures that only use the expected return are limited on two fronts: first an infinite number of return distributions with a wide range of performance-reproducibility trade-offs can have the same expected return, limiting its effectiveness when used for comparing policies; second, the expected return metric does not leave any room for practitioners to choose the best trade-off value for considered applications. In this work, we address these limitations by recommending the use of Lower Confidence Bound, a metric taken from Bayesian optimisation that provides the user with a preference parameter to choose a desired performance-reproducibility trade-off. We also formalise and quantify policy reproducibility, and demonstrate the benefit of our metrics using extensive experiments of popular RL algorithms on common uncertain RL tasks.
PDF

点此查看论文截图

ReRoGCRL: Representation-based Robustness in Goal-Conditioned Reinforcement Learning

Authors:Xiangyu Yin, Sihao Wu, Jiaxu Liu, Meng Fang, Xingyu Zhao, Xiaowei Huang, Wenjie Ruan

While Goal-Conditioned Reinforcement Learning (GCRL) has gained attention, its algorithmic robustness, particularly against adversarial perturbations, remains unexplored. Unfortunately, the attacks and robust representation training methods specifically designed for traditional RL are not so effective when applied to GCRL. To address this challenge, we propose the \textit{Semi-Contrastive Representation} attack, a novel approach inspired by the adversarial contrastive attack. Unlike existing attacks in RL, it only necessitates information from the policy function and can be seamlessly implemented during deployment. Furthermore, to mitigate the vulnerability of existing GCRL algorithms, we introduce \textit{Adversarial Representation Tactics}. This strategy combines \textit{Semi-Contrastive Adversarial Augmentation} with \textit{Sensitivity-Aware Regularizer}. It improves the adversarial robustness of the underlying agent against various types of perturbations. Extensive experiments validate the superior performance of our attack and defence mechanism across multiple state-of-the-art GCRL algorithms. Our tool {\bf ReRoGCRL} is available at \url{https://github.com/TrustAI/ReRoGCRL}.
PDF This paper has been accepted in AAAI24 (https://aaai.org/aaai-conference/)

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录