2023-12-13 更新
Learning to sample in Cartesian MRI
Authors:Thomas Sanchez
Despite its exceptional soft tissue contrast, Magnetic Resonance Imaging (MRI) faces the challenge of long scanning times compared to other modalities like X-ray radiography. Shortening scanning times is crucial in clinical settings, as it increases patient comfort, decreases examination costs and improves throughput. Recent advances in compressed sensing (CS) and deep learning allow accelerated MRI acquisition by reconstructing high-quality images from undersampled data. While reconstruction algorithms have received most of the focus, designing acquisition trajectories to optimize reconstruction quality remains an open question. This thesis explores two approaches to address this gap in the context of Cartesian MRI. First, we propose two algorithms, lazy LBCS and stochastic LBCS, that significantly improve upon G\”ozc\”u et al.’s greedy learning-based CS (LBCS) approach. These algorithms scale to large, clinically relevant scenarios like multi-coil 3D MR and dynamic MRI, previously inaccessible to LBCS. Additionally, we demonstrate that generative adversarial networks (GANs) can serve as a natural criterion for adaptive sampling by leveraging variance in the measurement domain to guide acquisition. Second, we delve into the underlying structures or assumptions that enable mask design algorithms to perform well in practice. Our experiments reveal that state-of-the-art deep reinforcement learning (RL) approaches, while capable of adaptation and long-horizon planning, offer only marginal improvements over stochastic LBCS, which is neither adaptive nor does long-term planning. Altogether, our findings suggest that stochastic LBCS and similar methods represent promising alternatives to deep RL. They shine in particular by their scalability and computational efficiency and could be key in the deployment of optimized acquisition trajectories in Cartesian MRI.
PDF PhD Thesis; 198 pages
点此查看论文截图
FitDiff: Robust monocular 3D facial shape and reflectance estimation using Diffusion Models
Authors:Stathis Galanakis, Alexandros Lattas, Stylianos Moschoglou, Stefanos Zafeiriou
The remarkable progress in 3D face reconstruction has resulted in high-detail and photorealistic facial representations. Recently, Diffusion Models have revolutionized the capabilities of generative methods by achieving far better performance than GANs. In this work, we present FitDiff, a diffusion-based 3D facial avatar generative model. This model accurately generates relightable facial avatars, utilizing an identity embedding extracted from an “in-the-wild” 2D facial image. Our multi-modal diffusion model concurrently outputs facial reflectance maps (diffuse and specular albedo and normals) and shapes, showcasing great generalization capabilities. It is solely trained on an annotated subset of a public facial dataset, paired with 3D reconstructions. We revisit the typical 3D facial fitting approach by guiding a reverse diffusion process using perceptual and face recognition losses. Being the first LDM conditioned on face recognition embeddings, FitDiff reconstructs relightable human avatars, that can be used as-is in common rendering engines, starting only from an unconstrained facial image, and achieving state-of-the-art performance.
PDF
点此查看论文截图
Damage GAN: A Generative Model for Imbalanced Data
Authors:Ali Anaissi, Yuanzhe Jia, Ali Braytee, Mohamad Naji, Widad Alyassine
This study delves into the application of Generative Adversarial Networks (GANs) within the context of imbalanced datasets. Our primary aim is to enhance the performance and stability of GANs in such datasets. In pursuit of this objective, we introduce a novel network architecture known as Damage GAN, building upon the ContraD GAN framework which seamlessly integrates GANs and contrastive learning. Through the utilization of contrastive learning, the discriminator is trained to develop an unsupervised representation capable of distinguishing all provided samples. Our approach draws inspiration from the straightforward framework for contrastive learning of visual representations (SimCLR), leading to the formulation of a distinctive loss function. We also explore the implementation of self-damaging contrastive learning (SDCLR) to further enhance the optimization of the ContraD GAN model. Comparative evaluations against baseline models including the deep convolutional GAN (DCGAN) and ContraD GAN demonstrate the evident superiority of our proposed model, Damage GAN, in terms of generated image distribution, model stability, and image quality when applied to imbalanced datasets.
PDF Accepted by AusDM 2023
点此查看论文截图
MVDD: Multi-View Depth Diffusion Models
Authors:Zhen Wang, Qiangeng Xu, Feitong Tan, Menglei Chai, Shichen Liu, Rohit Pandey, Sean Fanello, Achuta Kadambi, Yinda Zhang
Denoising diffusion models have demonstrated outstanding results in 2D image generation, yet it remains a challenge to replicate its success in 3D shape generation. In this paper, we propose leveraging multi-view depth, which represents complex 3D shapes in a 2D data format that is easy to denoise. We pair this representation with a diffusion model, MVDD, that is capable of generating high-quality dense point clouds with 20K+ points with fine-grained details. To enforce 3D consistency in multi-view depth, we introduce an epipolar line segment attention that conditions the denoising step for a view on its neighboring views. Additionally, a depth fusion module is incorporated into diffusion steps to further ensure the alignment of depth maps. When augmented with surface reconstruction, MVDD can also produce high-quality 3D meshes. Furthermore, MVDD stands out in other tasks such as depth completion, and can serve as a 3D prior, significantly boosting many downstream tasks, such as GAN inversion. State-of-the-art results from extensive experiments demonstrate MVDD’s excellent ability in 3D shape generation, depth completion, and its potential as a 3D prior for downstream tasks.
PDF
点此查看论文截图
Multi-view Inversion for 3D-aware Generative Adversarial Networks
Authors:Florian Barthel, Anna Hilsmann, Peter Eisert
Current 3D GAN inversion methods for human heads typically use only one single frontal image to reconstruct the whole 3D head model. This leaves out meaningful information when multi-view data or dynamic videos are available. Our method builds on existing state-of-the-art 3D GAN inversion techniques to allow for consistent and simultaneous inversion of multiple views of the same subject. We employ a multi-latent extension to handle inconsistencies present in dynamic face videos to re-synthesize consistent 3D representations from the sequence. As our method uses additional information about the target subject, we observe significant enhancements in both geometric accuracy and image quality, particularly when rendering from wide viewing angles. Moreover, we demonstrate the editability of our inverted 3D renderings, which distinguishes them from NeRF-based scene reconstructions.
PDF
点此查看论文截图
Semantic Image Synthesis for Abdominal CT
Authors:Yan Zhuang, Benjamin Hou, Tejas Sudharshan Mathai, Pritam Mukherjee, Boah Kim, Ronald M. Summers
As a new emerging and promising type of generative models, diffusion models have proven to outperform Generative Adversarial Networks (GANs) in multiple tasks, including image synthesis. In this work, we explore semantic image synthesis for abdominal CT using conditional diffusion models, which can be used for downstream applications such as data augmentation. We systematically evaluated the performance of three diffusion models, as well as to other state-of-the-art GAN-based approaches, and studied the different conditioning scenarios for the semantic mask. Experimental results demonstrated that diffusion models were able to synthesize abdominal CT images with better quality. Additionally, encoding the mask and the input separately is more effective than na\”ive concatenating.
PDF This paper has been accepted at Deep Generative Models workshop at MICCAI 2023
点此查看论文截图
CAD: Photorealistic 3D Generation via Adversarial Distillation
Authors:Ziyu Wan, Despoina Paschalidou, Ian Huang, Hongyu Liu, Bokui Shen, Xiaoyu Xiang, Jing Liao, Leonidas Guibas
The increased demand for 3D data in AR/VR, robotics and gaming applications, gave rise to powerful generative pipelines capable of synthesizing high-quality 3D objects. Most of these models rely on the Score Distillation Sampling (SDS) algorithm to optimize a 3D representation such that the rendered image maintains a high likelihood as evaluated by a pre-trained diffusion model. However, finding a correct mode in the high-dimensional distribution produced by the diffusion model is challenging and often leads to issues such as over-saturation, over-smoothing, and Janus-like artifacts. In this paper, we propose a novel learning paradigm for 3D synthesis that utilizes pre-trained diffusion models. Instead of focusing on mode-seeking, our method directly models the distribution discrepancy between multi-view renderings and diffusion priors in an adversarial manner, which unlocks the generation of high-fidelity and photorealistic 3D content, conditioned on a single image and prompt. Moreover, by harnessing the latent space of GANs and expressive diffusion model priors, our method facilitates a wide variety of 3D applications including single-view reconstruction, high diversity generation and continuous 3D interpolation in the open domain. The experiments demonstrate the superiority of our pipeline compared to previous works in terms of generation quality and diversity.
PDF Project page: http://raywzy.com/CAD/
点此查看论文截图
Class-Prototype Conditional Diffusion Model for Continual Learning with Generative Replay
Authors:Khanh Doan, Quyen Tran, Tuan Nguyen, Dinh Phung, Trung Le
Mitigating catastrophic forgetting is a key hurdle in continual learning. Deep Generative Replay (GR) provides techniques focused on generating samples from prior tasks to enhance the model’s memory capabilities. With the progression in generative AI, generative models have advanced from Generative Adversarial Networks (GANs) to the more recent Diffusion Models (DMs). A major issue is the deterioration in the quality of generated data compared to the original, as the generator continuously self-learns from its outputs. This degradation can lead to the potential risk of catastrophic forgetting occurring in the classifier. To address this, we propose the Class-Prototype Conditional Diffusion Model (CPDM), a GR-based approach for continual learning that enhances image quality in generators and thus reduces catastrophic forgetting in classifiers. The cornerstone of CPDM is a learnable class-prototype that captures the core characteristics of images in a given class. This prototype, integrated into the diffusion model’s denoising process, ensures the generation of high-quality images. It maintains its effectiveness for old tasks even when new tasks are introduced, preserving image generation quality and reducing the risk of catastrophic forgetting in classifiers. Our empirical studies on diverse datasets demonstrate that our proposed method significantly outperforms existing state-of-the-art models, highlighting its exceptional ability to preserve image quality and enhance the model’s memory retention.
PDF
点此查看论文截图
Patch-MI: Enhancing Model Inversion Attacks via Patch-Based Reconstruction
Authors:Jonggyu Jang, Hyeonsu Lyu, Hyun Jong Yang
Model inversion (MI) attacks aim to reveal sensitive information in training datasets by solely accessing model weights. Generative MI attacks, a prominent strand in this field, utilize auxiliary datasets to recreate target data attributes, restricting the images to remain photo-realistic, but their success often depends on the similarity between auxiliary and target datasets. If the distributions are dissimilar, existing MI attack attempts frequently fail, yielding unrealistic or target-unrelated results. In response to these challenges, we introduce a groundbreaking approach named Patch-MI, inspired by jigsaw puzzle assembly. To this end, we build upon a new probabilistic interpretation of MI attacks, employing a generative adversarial network (GAN)-like framework with a patch-based discriminator. This approach allows the synthesis of images that are similar to the target dataset distribution, even in cases of dissimilar auxiliary dataset distribution. Moreover, we artfully employ a random transformation block, a sophisticated maneuver that crafts generalized images, thus enhancing the efficacy of the target classifier. Our numerical and graphical findings demonstrate that Patch-MI surpasses existing generative MI methods in terms of accuracy, marking significant advancements while preserving comparable statistical dataset quality. For reproducibility of our results, we make our source code publicly available in https://github.com/jonggyujang0123/Patch-Attack.
PDF 11 pages
点此查看论文截图
Spatial-Contextual Discrepancy Information Compensation for GAN Inversion
Authors:Ziqiang Zhang, Yan Yan, Jing-Hao Xue, Hanzi Wang
Most existing GAN inversion methods either achieve accurate reconstruction but lack editability or offer strong editability at the cost of fidelity. Hence, how to balance the distortioneditability trade-off is a significant challenge for GAN inversion. To address this challenge, we introduce a novel spatial-contextual discrepancy information compensationbased GAN-inversion method (SDIC), which consists of a discrepancy information prediction network (DIPN) and a discrepancy information compensation network (DICN). SDIC follows a “compensate-and-edit” paradigm and successfully bridges the gap in image details between the original image and the reconstructed/edited image. On the one hand, DIPN encodes the multi-level spatial-contextual information of the original and initial reconstructed images and then predicts a spatial-contextual guided discrepancy map with two hourglass modules. In this way, a reliable discrepancy map that models the contextual relationship and captures finegrained image details is learned. On the other hand, DICN incorporates the predicted discrepancy information into both the latent code and the GAN generator with different transformations, generating high-quality reconstructed/edited images. This effectively compensates for the loss of image details during GAN inversion. Both quantitative and qualitative experiments demonstrate that our proposed method achieves the excellent distortion-editability trade-off at a fast inference speed for both image inversion and editing tasks.
PDF
点此查看论文截图
Double-Flow GAN model for the reconstruction of perceived faces from brain activities
Authors:Zihao Wang, Jing Zhao, Hui Zhang
Face plays an important role in human’s visual perception, and reconstructing perceived faces from brain activities is challenging because of its difficulty in extracting high-level features and maintaining consistency of multiple face attributes, such as expression, identity, gender, etc. In this study, we proposed a novel reconstruction framework, which we called Double-Flow GAN, that can enhance the capability of discriminator and handle imbalances in images from certain domains that are too easy for generators. We also designed a pretraining process that uses features extracted from images as conditions for making it possible to pretrain the conditional reconstruction model from fMRI in a larger pure image dataset. Moreover, we developed a simple pretrained model to perform fMRI alignment to alleviate the problem of cross-subject reconstruction due to the variations of brain structure among different subjects. We conducted experiments by using our proposed method and state-of-the-art reconstruction models. Our results demonstrated that our method showed significant reconstruction performance, outperformed the previous reconstruction models, and exhibited a good generation ability.
PDF