强化学习


2023-11-28 更新

Efficient Open-world Reinforcement Learning via Knowledge Distillation and Autonomous Rule Discovery

Authors:Ekaterina Nikonova, Cheng Xue, Jochen Renz

Deep reinforcement learning suffers from catastrophic forgetting and sample inefficiency making it less applicable to the ever-changing real world. However, the ability to use previously learned knowledge is essential for AI agents to quickly adapt to novelties. Often, certain spatial information observed by the agent in the previous interactions can be leveraged to infer task-specific rules. Inferred rules can then help the agent to avoid potentially dangerous situations in the previously unseen states and guide the learning process increasing agent’s novelty adaptation speed. In this work, we propose a general framework that is applicable to deep reinforcement learning agents. Our framework provides the agent with an autonomous way to discover the task-specific rules in the novel environments and self-supervise it’s learning. We provide a rule-driven deep Q-learning agent (RDQ) as one possible implementation of that framework. We show that RDQ successfully extracts task-specific rules as it interacts with the world and uses them to drastically increase its learning efficiency. In our experiments, we show that the RDQ agent is significantly more resilient to the novelties than the baseline agents, and is able to detect and adapt to novel situations faster.
PDF

点此查看论文截图

Where2Start: Leveraging initial States for Robust and Sample-Efficient Reinforcement Learning

Authors:Pouya Parsa, Raoof Zare Moayedi, Mohammad Bornosi, Mohammad Mahdi Bejani

The reinforcement learning algorithms that focus on how to compute the gradient and choose next actions, are effectively improved the performance of the agents. However, these algorithms are environment-agnostic. This means that the algorithms did not use the knowledge that has been captured by trajectory. This poses that the algorithms should sample many trajectories to train the model. By considering the essence of environment and how much the agent learn from each scenario in that environment, the strategy of the learning procedure can be changed. The strategy retrieves more informative trajectories, so the agent can learn with fewer trajectory sample. We propose Where2Start algorithm that selects the initial state so that the agent has more instability in vicinity of that state. We show that this kind of selection decreases number of trajectories that should be sampled that the agent reach to acceptable reward. Our experiments shows that Where2Start can improve sample efficiency up to 8 times. Also Where2Start can combined with most of state-of-the-art algorithms and improve that robustness and sample efficiency significantly.
PDF 9 pages, 3 figures

点此查看论文截图

Authors:Aboli Marathe

Large vision-language models are steadily gaining personalization capabilities at the cost of fine-tuning or data augmentation. We present two models for image generation using model-agnostic learning that align semantic priors with generative capabilities. RLDF, or Reinforcement Learning from Diffusion Feedback, is a singular approach for visual imitation through prior-preserving reward function guidance. This employs Q-learning (with standard Q*) for generation and follows a semantic-rewarded trajectory for image search through finite encoding-tailored actions. The second proposed method, noisy diffusion gradient, is optimization driven. At the root of both methods is a special CFG encoding that we propose for continual semantic guidance. Using only a single input image and no text input, RLDF generates high-quality images over varied domains including retail, sports and agriculture showcasing class-consistency and strong visual diversity. Project website is available at https://infernolia.github.io/RLDF.
PDF

点此查看论文截图

Utilizing Explainability Techniques for Reinforcement Learning Model Assurance

Authors:Alexander Tapley, Kyle Gatesman, Luis Robaina, Brett Bissey, Joseph Weissman

Explainable Reinforcement Learning (XRL) can provide transparency into the decision-making process of a Deep Reinforcement Learning (DRL) model and increase user trust and adoption in real-world use cases. By utilizing XRL techniques, researchers can identify potential vulnerabilities within a trained DRL model prior to deployment, therefore limiting the potential for mission failure or mistakes by the system. This paper introduces the ARLIN (Assured RL Model Interrogation) Toolkit, an open-source Python library that identifies potential vulnerabilities and critical points within trained DRL models through detailed, human-interpretable explainability outputs. To illustrate ARLIN’s effectiveness, we provide explainability visualizations and vulnerability analysis for a publicly available DRL model. The open-source code repository is available for download at https://github.com/mitre/arlin.
PDF 9 pages, 8 figures including appendices (A, B, C). Accepted as a poster presentation in the demo track at the “XAI in Action: Past, Present, and Future Applications” workshop at NeurIPS 2023. MITRE Public Release Case Number 23-3095

点此查看论文截图

Reinforcement Learning for Wildfire Mitigation in Simulated Disaster Environments

Authors:Alexander Tapley, Marissa Dotter, Michael Doyle, Aidan Fennelly, Dhanuj Gandikota, Savanna Smith, Michael Threet, Tim Welsh

Climate change has resulted in a year over year increase in adverse weather and weather conditions which contribute to increasingly severe fire seasons. Without effective mitigation, these fires pose a threat to life, property, ecology, cultural heritage, and critical infrastructure. To better prepare for and react to the increasing threat of wildfires, more accurate fire modelers and mitigation responses are necessary. In this paper, we introduce SimFire, a versatile wildland fire projection simulator designed to generate realistic wildfire scenarios, and SimHarness, a modular agent-based machine learning wrapper capable of automatically generating land management strategies within SimFire to reduce the overall damage to the area. Together, this publicly available system allows researchers and practitioners the ability to emulate and assess the effectiveness of firefighter interventions and formulate strategic plans that prioritize value preservation and resource allocation optimization. The repositories are available for download at https://github.com/mitrefireline.
PDF 12 pages, 4 figures including Appendices (A, B). Accepted as a paper in the Proposals track at the “Tackling Climate Change with Machine Learning” workshop at NeurIPS 2023. MITRE Public Release Case Number 23-3920

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录