2023-11-28 更新

One Fits All: Universal Time Series Analysis by Pretrained LM and Specially Designed Adaptors

Authors:Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, Rong Jin

Despite the impressive achievements of pre-trained models in the fields of natural language processing (NLP) and computer vision (CV), progress in the domain of time series analysis has been limited. In contrast to NLP and CV, where a single model can handle various tasks, time series analysis still relies heavily on task-specific methods for activities such as classification, anomaly detection, forecasting, and few-shot learning. The primary obstacle to developing a pre-trained model for time series analysis is the scarcity of sufficient training data. In our research, we overcome this obstacle by utilizing pre-trained models from language or CV, which have been trained on billions of data points, and apply them to time series analysis. We assess the effectiveness of the pre-trained transformer model in two ways. Initially, we maintain the original structure of the self-attention and feedforward layers in the residual blocks of the pre-trained language or image model, using the Frozen Pre-trained Transformer (FPT) for time series analysis with the addition of projection matrices for input and output. Additionally, we introduce four unique adapters, designed specifically for downstream tasks based on the pre-trained model, including forecasting and anomaly detection. These adapters are further enhanced with efficient parameter tuning, resulting in superior performance compared to all state-of-the-art methods.Our comprehensive experimental studies reveal that (a) the simple FPT achieves top-tier performance across various time series analysis tasks; and (b) fine-tuning the FPT with the custom-designed adapters can further elevate its performance, outshining specialized task-specific models.
PDF this article draws heavily from arXiv:2302.11939


Double Reverse Regularization Network Based on Self-Knowledge Distillation for SAR Object Classification

Authors:Bo Xu, Hao Zheng, Zhigang Hu, Liu Yang, Meiguang Zheng

In current synthetic aperture radar (SAR) object classification, one of the major challenges is the severe overfitting issue due to the limited dataset (few-shot) and noisy data. Considering the advantages of knowledge distillation as a learned label smoothing regularization, this paper proposes a novel Double Reverse Regularization Network based on Self-Knowledge Distillation (DRRNet-SKD). Specifically, through exploring the effect of distillation weight on the process of distillation, we are inspired to adopt the double reverse thought to implement an effective regularization network by combining offline and online distillation in a complementary way. Then, the Adaptive Weight Assignment (AWA) module is designed to adaptively assign two reverse-changing weights based on the network performance, allowing the student network to better benefit from both teachers. The experimental results on OpenSARShip and FUSAR-Ship demonstrate that DRRNet-SKD exhibits remarkable performance improvement on classical CNNs, outperforming state-of-the-art self-knowledge distillation methods.
PDF 6 pages, 8 figures


ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection

Authors:Yichen Bai, Zongbo Han, Changqing Zhang, Bing Cao, Xiaoheng Jiang, Qinghua Hu

Out-of-distribution (OOD) detection methods often exploit auxiliary outliers to train model identifying OOD samples, especially discovering challenging outliers from auxiliary outliers dataset to improve OOD detection. However, they may still face limitations in effectively distinguishing between the most challenging OOD samples that are much like in-distribution (ID) data, i.e., ID-like samples. To this end, we propose a novel OOD detection framework that discovers ID-like outliers using CLIP from the vicinity space of the ID samples, thus helping to identify these most challenging OOD samples. Then a prompt learning framework is proposed that utilizes the identified ID-like outliers to further leverage the capabilities of CLIP for OOD detection. Benefiting from the powerful CLIP, we only need a small number of ID samples to learn the prompts of the model without exposing other auxiliary outlier datasets. By focusing on the most challenging ID-like OOD samples and elegantly exploiting the capabilities of CLIP, our method achieves superior few-shot learning performance on various real-world image datasets (e.g., in 4-shot OOD detection on the ImageNet-1k dataset, our method reduces the average FPR95 by 12.16% and improves the average AUROC by 2.76%, compared to state-of-the-art methods).
PDF Under review


CaesarNeRF: Calibrated Semantic Representation for Few-shot Generalizable Neural Rendering

Authors:Haidong Zhu, Tianyu Ding, Tianyi Chen, Ilya Zharkov, Ram Nevatia, Luming Liang

Generalizability and few-shot learning are key challenges in Neural Radiance Fields (NeRF), often due to the lack of a holistic understanding in pixel-level rendering. We introduce CaesarNeRF, an end-to-end approach that leverages scene-level CAlibratEd SemAntic Representation along with pixel-level representations to advance few-shot, generalizable neural rendering, facilitating a holistic understanding without compromising high-quality details. CaesarNeRF explicitly models pose differences of reference views to combine scene-level semantic representations, providing a calibrated holistic understanding. This calibration process aligns various viewpoints with precise location and is further enhanced by sequential refinement to capture varying details. Extensive experiments on public datasets, including LLFF, Shiny, mip-NeRF 360, and MVImgNet, show that CaesarNeRF delivers state-of-the-art performance across varying numbers of reference views, proving effective even with a single reference image. The project page of this work can be found at https://haidongz-usc.github.io/project/caesarnerf.


HAVE-FUN: Human Avatar Reconstruction from Few-Shot Unconstrained Images

Authors:Xihe Yang, Xingyu Chen, Shaohui Wang, Daiheng Gao, Xiaoguang Han, Baoyuan Wang

As for human avatar reconstruction, contemporary techniques commonly necessitate the acquisition of costly data and struggle to achieve satisfactory results from a small number of casual images. In this paper, we investigate this task from a few-shot unconstrained photo album. The reconstruction of human avatars from such data sources is challenging because of limited data amount and dynamic articulated poses. For handling dynamic data, we integrate a skinning mechanism with deep marching tetrahedra (DMTet) to form a drivable tetrahedral representation, which drives arbitrary mesh topologies generated by the DMTet for the adaptation of unconstrained images. To effectively mine instructive information from few-shot data, we devise a two-phase optimization method with few-shot reference and few-shot guidance. The former focuses on aligning avatar identity with reference images, while the latter aims to generate plausible appearances for unseen regions. Overall, our framework, called HaveFun, can undertake avatar reconstruction, rendering, and animation. Extensive experiments on our developed benchmarks demonstrate that HaveFun exhibits substantially superior performance in reconstructing the human body and hand. Project website: https://seanchenxy.github.io/HaveFunWeb/.

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !