检测/分割/跟踪


2023-11-25 更新

SparseTrack: Multi-Object Tracking by Performing Scene Decomposition based on Pseudo-Depth

Authors:Zelin Liu, Xinggang Wang, Cheng Wang, Wenyu Liu, Xiang Bai

Exploring robust and efficient association methods has always been an important issue in multiple-object tracking (MOT). Although existing tracking methods have achieved impressive performance, congestion and frequent occlusions still pose challenging problems in multi-object tracking. We reveal that performing sparse decomposition on dense scenes is a crucial step to enhance the performance of associating occluded targets. To this end, we propose a pseudo-depth estimation method for obtaining the relative depth of targets from 2D images. Secondly, we design a depth cascading matching (DCM) algorithm, which can use the obtained depth information to convert a dense target set into multiple sparse target subsets and perform data association on these sparse target subsets in order from near to far. By integrating the pseudo-depth method and the DCM strategy into the data association process, we propose a new tracker, called SparseTrack. SparseTrack provides a new perspective for solving the challenging crowded scene MOT problem. Only using IoU matching, SparseTrack achieves comparable performance with the state-of-the-art (SOTA) methods on the MOT17 and MOT20 benchmarks. Code and models are publicly available at \url{https://github.com/hustvl/SparseTrack}.
PDF 12 pages, 8 figures

点此查看论文截图

Optimizing rgb-d semantic segmentation through multi-modal interaction and pooling attention

Authors:Shuai Zhang, Minghong Xie

Semantic segmentation of RGB-D images involves understanding the appearance and spatial relationships of objects within a scene, which requires careful consideration of various factors. However, in indoor environments, the simple input of RGB and depth images often results in a relatively limited acquisition of semantic and spatial information, leading to suboptimal segmentation outcomes. To address this, we propose the Multi-modal Interaction and Pooling Attention Network (MIPANet), a novel approach designed to harness the interactive synergy between RGB and depth modalities, optimizing the utilization of complementary information. Specifically, we incorporate a Multi-modal Interaction Fusion Module (MIM) into the deepest layers of the network. This module is engineered to facilitate the fusion of RGB and depth information, allowing for mutual enhancement and correction. Additionally, we introduce a Pooling Attention Module (PAM) at various stages of the encoder. This module serves to amplify the features extracted by the network and integrates the module’s output into the decoder in a targeted manner, significantly improving semantic segmentation performance. Our experimental results demonstrate that MIPANet outperforms existing methods on two indoor scene datasets, NYUDv2 and SUN-RGBD, underscoring its effectiveness in enhancing RGB-D semantic segmentation.
PDF

点此查看论文截图

Generalized Category Discovery in Semantic Segmentation

Authors:Zhengyuan Peng, Qijian Tian, Jianqing Xu, Yizhang Jin, Xuequan Lu, Xin Tan, Yuan Xie, Lizhuang Ma

This paper explores a novel setting called Generalized Category Discovery in Semantic Segmentation (GCDSS), aiming to segment unlabeled images given prior knowledge from a labeled set of base classes. The unlabeled images contain pixels of the base class or novel class. In contrast to Novel Category Discovery in Semantic Segmentation (NCDSS), there is no prerequisite for prior knowledge mandating the existence of at least one novel class in each unlabeled image. Besides, we broaden the segmentation scope beyond foreground objects to include the entire image. Existing NCDSS methods rely on the aforementioned priors, making them challenging to truly apply in real-world situations. We propose a straightforward yet effective framework that reinterprets the GCDSS challenge as a task of mask classification. Additionally, we construct a baseline method and introduce the Neighborhood Relations-Guided Mask Clustering Algorithm (NeRG-MaskCA) for mask categorization to address the fragmentation in semantic representation. A benchmark dataset, Cityscapes-GCD, derived from the Cityscapes dataset, is established to evaluate the GCDSS framework. Our method demonstrates the feasibility of the GCDSS problem and the potential for discovering and segmenting novel object classes in unlabeled images. We employ the generated pseudo-labels from our approach as ground truth to supervise the training of other models, thereby enabling them with the ability to segment novel classes. It paves the way for further research in generalized category discovery, broadening the horizons of semantic segmentation and its applications. For details, please visit https://github.com/JethroPeng/GCDSS
PDF

点此查看论文截图

CastDet: Toward Open Vocabulary Aerial Object Detection with CLIP-Activated Student-Teacher Learning

Authors:Yan Li, Weiwei Guo, Dunyun He, Jiaqi Zhou, Yuze Gao, Wenxian Yu

Object detection in aerial images is a pivotal task for various earth observation applications, whereas current algorithms learn to detect only a pre-defined set of object categories demanding sufficient bounding-box annotated training samples and fail to detect novel object categories. In this paper, we consider open-vocabulary object detection (OVD) in aerial images that enables the characterization of new objects beyond training categories on the earth surface without annotating training images for these new categories. The performance of OVD depends on the quality of class-agnostic region proposals and pseudo-labels that can generalize well to novel object categories. To simultaneously generate high-quality proposals and pseudo-labels, we propose CastDet, a CLIP-activated student-teacher open-vocabulary object Detection framework. Our end-to-end framework within the student-teacher mechanism employs the CLIP model as an extra omniscient teacher of rich knowledge into the student-teacher self-learning process. By doing so, our approach boosts novel object proposals and classification. Furthermore, we design a dynamic label queue technique to maintain high-quality pseudo labels during batch training and mitigate label imbalance. We conduct extensive experiments on multiple existing aerial object detection datasets, which are set up for the OVD task. Experimental results demonstrate our CastDet achieving superior open-vocabulary detection performance, e.g., reaching 40.0 HM (Harmonic Mean), which outperforms previous methods Detic/ViLD by 26.9/21.1 on the VisDroneZSD dataset.
PDF

点此查看论文截图

ABFL: Angular Boundary Discontinuity Free Loss for Arbitrary Oriented Object Detection in Aerial Images

Authors:Zifei Zhao, Shengyang Li

Arbitrary oriented object detection (AOOD) in aerial images is a widely concerned and highly challenging task, and plays an important role in many scenarios. The core of AOOD involves the representation, encoding, and feature augmentation of oriented bounding-boxes (Bboxes). Existing methods lack intuitive modeling of angle difference measurement in oriented Bbox representations. Oriented Bboxes under different representations exhibit rotational symmetry with varying periods due to angle periodicity. The angular boundary discontinuity (ABD) problem at periodic boundary positions is caused by rotational symmetry in measuring angular differences. In addition, existing methods also use additional encoding-decoding structures for oriented Bboxes. In this paper, we design an angular boundary free loss (ABFL) based on the von Mises distribution. The ABFL aims to solve the ABD problem when detecting oriented objects. Specifically, ABFL proposes to treat angles as circular data rather than linear data when measuring angle differences, aiming to introduce angle periodicity to alleviate the ABD problem and improve the accuracy of angle difference measurement. In addition, ABFL provides a simple and effective solution for various periodic boundary discontinuities caused by rotational symmetry in AOOD tasks, as it does not require additional encoding-decoding structures for oriented Bboxes. Extensive experiments on the DOTA and HRSC2016 datasets show that the proposed ABFL loss outperforms some state-of-the-art methods focused on addressing the ABD problem.
PDF

点此查看论文截图

Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for Advanced Object Detection

Authors:Ahmed Sharshar, Aleksandr Matsun

In the realm of aerial image analysis, object detection plays a pivotal role, with significant implications for areas such as remote sensing, urban planning, and disaster management. This study addresses the inherent challenges in this domain, notably the detection of small objects, managing densely packed elements, and accounting for diverse orientations. We present an in-depth evaluation of an object detection model that integrates the Large Selective Kernel Network (LSKNet)as its backbone with the DiffusionDet head, utilizing the iSAID dataset for empirical analysis. Our approach encompasses the introduction of novel methodologies and extensive ablation studies. These studies critically assess various aspects such as loss functions, box regression techniques, and classification strategies to refine the model’s precision in object detection. The paper details the experimental application of the LSKNet backbone in synergy with the DiffusionDet heads, a combination tailored to meet the specific challenges in aerial image object detection. The findings of this research indicate a substantial enhancement in the model’s performance, especially in the accuracy-time tradeoff. The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement, outperforming the RCNN model by 4.7% on the same dataset. This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis, paving the way for more accurate and efficient object detection methodologies. The code is publicly available at https://github.com/SashaMatsun/LSKDiffDet
PDF

点此查看论文截图

DA-STC: Domain Adaptive Video Semantic Segmentation via Spatio-Temporal Consistency

Authors:Zhe Zhang, Gaochang Wu, Jing Zhang, Chunhua Shen, Dacheng Tao, Tianyou Chai

Video semantic segmentation is a pivotal aspect of video representation learning. However, significant domain shifts present a challenge in effectively learning invariant spatio-temporal features across the labeled source domain and unlabeled target domain for video semantic segmentation. To solve the challenge, we propose a novel DA-STC method for domain adaptive video semantic segmentation, which incorporates a bidirectional multi-level spatio-temporal fusion module and a category-aware spatio-temporal feature alignment module to facilitate consistent learning for domain-invariant features. Firstly, we perform bidirectional spatio-temporal fusion at the image sequence level and shallow feature level, leading to the construction of two fused intermediate video domains. This prompts the video semantic segmentation model to consistently learn spatio-temporal features of shared patch sequences which are influenced by domain-specific contexts, thereby mitigating the feature gap between the source and target domain. Secondly, we propose a category-aware feature alignment module to promote the consistency of spatio-temporal features, facilitating adaptation to the target domain. Specifically, we adaptively aggregate the domain-specific deep features of each category along spatio-temporal dimensions, which are further constrained to achieve cross-domain intra-class feature alignment and inter-class feature separation. Extensive experiments demonstrate the effectiveness of our method, which achieves state-of-the-art mIOUs on multiple challenging benchmarks. Furthermore, we extend the proposed DA-STC to the image domain, where it also exhibits superior performance for domain adaptive semantic segmentation. The source code and models will be made available at \url{https://github.com/ZHE-SAPI/DA-STC}.
PDF 18 pages,9 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录