2023-11-25 更新

Adapt in Contexts: Retrieval-Augmented Domain Adaptation via In-Context Learning

Authors:Quanyu Long, Wenya Wang, Sinno Jialin Pan

Large language models (LLMs) have showcased their capability with few-shot inference known as in-context learning. However, in-domain demonstrations are not always readily available in real scenarios, leading to cross-domain in-context learning. Besides, LLMs are still facing challenges in long-tail knowledge in unseen and unfamiliar domains. The above limitations demonstrate the necessity of Unsupervised Domain Adaptation (UDA). In this paper, we study the UDA problem under an in-context learning setting to adapt language models from the source domain to the target domain without any target labels. The core idea is to retrieve a subset of cross-domain elements that are the most similar to the query, and elicit language model to adapt in an in-context manner by learning both target domain distribution and the discriminative task signal simultaneously with the augmented cross-domain in-context examples. We devise different prompting and training strategies, accounting for different LM architectures to learn the target distribution via language modeling. With extensive experiments on Sentiment Analysis (SA) and Named Entity Recognition (NER) tasks, we thoroughly study the effectiveness of ICL for domain transfer and demonstrate significant improvements over baseline models.


Exploring Prompting Large Language Models as Explainable Metrics

Authors:Ghazaleh Mahmoudi

This paper describes the IUST NLP Lab submission to the Prompting Large Language Models as Explainable Metrics Shared Task at the Eval4NLP 2023 Workshop on Evaluation & Comparison of NLP Systems. We have proposed a zero-shot prompt-based strategy for explainable evaluation of the summarization task using Large Language Models (LLMs). The conducted experiments demonstrate the promising potential of LLMs as evaluation metrics in Natural Language Processing (NLP), particularly in the field of summarization. Both few-shot and zero-shot approaches are employed in these experiments. The performance of our best provided prompts achieved a Kendall correlation of 0.477 with human evaluations in the text summarization task on the test data. Code and results are publicly available on GitHub.
PDF 9 pages, Eval4NLP 2023


KBioXLM: A Knowledge-anchored Biomedical Multilingual Pretrained Language Model

Authors:Lei Geng, Xu Yan, Ziqiang Cao, Juntao Li, Wenjie Li, Sujian Li, Xinjie Zhou, Yang Yang, Jun Zhang

Most biomedical pretrained language models are monolingual and cannot handle the growing cross-lingual requirements. The scarcity of non-English domain corpora, not to mention parallel data, poses a significant hurdle in training multilingual biomedical models. Since knowledge forms the core of domain-specific corpora and can be translated into various languages accurately, we propose a model called KBioXLM, which transforms the multilingual pretrained model XLM-R into the biomedical domain using a knowledge-anchored approach. We achieve a biomedical multilingual corpus by incorporating three granularity knowledge alignments (entity, fact, and passage levels) into monolingual corpora. Then we design three corresponding training tasks (entity masking, relation masking, and passage relation prediction) and continue training on top of the XLM-R model to enhance its domain cross-lingual ability. To validate the effectiveness of our model, we translate the English benchmarks of multiple tasks into Chinese. Experimental results demonstrate that our model significantly outperforms monolingual and multilingual pretrained models in cross-lingual zero-shot and few-shot scenarios, achieving improvements of up to 10+ points. Our code is publicly available at https://github.com/ngwlh-gl/KBioXLM.


Decoupled DETR For Few-shot Object Detection

Authors:Zeyu Shangguan, Lian Huai, Tong Liu, Xingqun Jiang

Few-shot object detection (FSOD), an efficient method for addressing the severe data-hungry problem, has been extensively discussed. Current works have significantly advanced the problem in terms of model and data. However, the overall performance of most FSOD methods still does not fulfill the desired accuracy. In this paper we improve the FSOD model to address the severe issue of sample imbalance and weak feature propagation. To alleviate modeling bias from data-sufficient base classes, we examine the effect of decoupling the parameters for classes with sufficient data and classes with few samples in various ways. We design a base-novel categories decoupled DETR (DeDETR) for FSOD. We also explore various types of skip connection between the encoder and decoder for DETR. Besides, we notice that the best outputs could come from the intermediate layer of the decoder instead of the last layer; therefore, we build a unified decoder module that could dynamically fuse the decoder layers as the output feature. We evaluate our model on commonly used datasets such as PASCAL VOC and MSCOCO. Our results indicate that our proposed module could achieve stable improvements of 5% to 10% in both fine-tuning and meta-learning paradigms and has outperformed the highest score in recent works.


Generalization of Fitness Exercise Recognition from Doppler Measurements by Domain-adaption and Few-Shot Learning

Authors:Biying Fu, Naser Damer, Florian Kirchbuchner, Arjan Kuijper

In previous works, a mobile application was developed using an unmodified commercial off-the-shelf smartphone to recognize whole-body exercises. The working principle was based on the ultrasound Doppler sensing with the device built-in hardware. Applying such a lab-environment trained model on realistic application variations causes a significant drop in performance, and thus decimate its applicability. The reason of the reduced performance can be manifold. It could be induced by the user, environment, and device variations in realistic scenarios. Such scenarios are often more complex and diverse, which can be challenging to anticipate in the initial training data. To study and overcome this issue, this paper presents a database with controlled and uncontrolled subsets of fitness exercises. We propose two concepts to utilize small adaption data to successfully improve model generalization in an uncontrolled environment, increasing the recognition accuracy by two to six folds compared to the baseline for different users.
PDF accepted at International Conference on Pattern Recognition (ICPR) workshop 2021


Few-Shot Classification & Segmentation Using Large Language Models Agent

Authors:Tian Meng, Yang Tao, Wuliang Yin

The task of few-shot image classification and segmentation (FS-CS) requires the classification and segmentation of target objects in a query image, given only a few examples of the target classes. We introduce a method that utilises large language models (LLM) as an agent to address the FS-CS problem in a training-free manner. By making the LLM the task planner and off-the-shelf vision models the tools, the proposed method is capable of classifying and segmenting target objects using only image-level labels. Specifically, chain-of-thought prompting and in-context learning guide the LLM to observe support images like human; vision models such as Segment Anything Model (SAM) and GPT-4Vision assist LLM understand spatial and semantic information at the same time. Ultimately, the LLM uses its summarizing and reasoning capabilities to classify and segment the query image. The proposed method’s modular framework makes it easily extendable. Our approach achieves state-of-the-art performance on the Pascal-5i dataset.


Towards Few-shot Out-of-Distribution Detection

Authors:Jiuqing Dong, Yongbin Gao, Heng Zhou, Jun Cen, Yifan Yao, Sook Yoon, Park Dong Sun

Out-of-distribution (OOD) detection is critical for ensuring the reliability of open-world intelligent systems. Despite the notable advancements in existing OOD detection methodologies, our study identifies a significant performance drop under the scarcity of training samples. In this context, we introduce a novel few-shot OOD detection benchmark, carefully constructed to address this gap. Our empirical analysis reveals the superiority of ParameterEfficient Fine-Tuning (PEFT) strategies, such as visual prompt tuning and visual adapter tuning, over conventional techniques, including fully fine-tuning and linear probing tuning in the few-shot OOD detection task. Recognizing some crucial information from the pre-trained model, which is pivotal for OOD detection, may be lost during the fine-tuning process, we propose a method termed DomainSpecific and General Knowledge Fusion (DSGF). This approach is designed to be compatible with diverse fine-tuning frameworks. Our experiments show that the integration of DSGF significantly enhances the few-shot OOD detection capabilities across various methods and fine-tuning methodologies, including fully fine-tuning, visual adapter tuning, and visual prompt tuning. The code will be released.


Model-aware 3D Eye Gaze from Weak and Few-shot Supervisions

Authors:Nikola Popovic, Dimitrios Christodoulou, Danda Pani Paudel, Xi Wang, Luc Van Gool

The task of predicting 3D eye gaze from eye images can be performed either by (a) end-to-end learning for image-to-gaze mapping or by (b) fitting a 3D eye model onto images. The former case requires 3D gaze labels, while the latter requires eye semantics or landmarks to facilitate the model fitting. Although obtaining eye semantics and landmarks is relatively easy, fitting an accurate 3D eye model on them remains to be very challenging due to its ill-posed nature in general. On the other hand, obtaining large-scale 3D gaze data is cumbersome due to the required hardware setups and computational demands. In this work, we propose to predict 3D eye gaze from weak supervision of eye semantic segmentation masks and direct supervision of a few 3D gaze vectors. The proposed method combines the best of both worlds by leveraging large amounts of weak annotations—which are easy to obtain, and only a few 3D gaze vectors—which alleviate the difficulty of fitting 3D eye models on the semantic segmentation of eye images. Thus, the eye gaze vectors, used in the model fitting, are directly supervised using the few-shot gaze labels. Additionally, we propose a transformer-based network architecture, that serves as a solid baseline for our improvements. Our experiments in diverse settings illustrate the significant benefits of the proposed method, achieving about 5 degrees lower angular gaze error over the baseline, when only 0.05% 3D annotations of the training images are used. The source code is available at https://github.com/dimitris-christodoulou57/Model-aware_3D_Eye_Gaze.
PDF Accepted to ISMAR2023 as a poster paper


Point, Segment and Count: A Generalized Framework for Object Counting

Authors:Huang Zhizhong, Dai Mingliang, Zhang Yi, Zhang Junping, Shan Hongming

Class-agnostic object counting aims to count all objects in an image with respect to example boxes or class names, \emph{a.k.a} few-shot and zero-shot counting. Current state-of-the-art methods highly rely on density maps to predict object counts, which lacks model interpretability. In this paper, we propose a generalized framework for both few-shot and zero-shot object counting based on detection. Our framework combines the superior advantages of two foundation models without compromising their zero-shot capability: (\textbf{i}) SAM to segment all possible objects as mask proposals, and (\textbf{ii}) CLIP to classify proposals to obtain accurate object counts. However, this strategy meets the obstacles of efficiency overhead and the small crowded objects that cannot be localized and distinguished. To address these issues, our framework, termed PseCo, follows three steps: point, segment, and count. Specifically, we first propose a class-agnostic object localization to provide accurate but least point prompts for SAM, which consequently not only reduces computation costs but also avoids missing small objects. Furthermore, we propose a generalized object classification that leverages CLIP image/text embeddings as the classifier, following a hierarchical knowledge distillation to obtain discriminative classifications among hierarchical mask proposals. Extensive experimental results on FSC-147 dataset demonstrate that PseCo achieves state-of-the-art performance in both few-shot/zero-shot object counting/detection, with additional results on large-scale COCO and LVIS datasets. The source code is available at \url{https://github.com/Hzzone/PseCo}.


From Wrong To Right: A Recursive Approach Towards Vision-Language Explanation

Authors:Jiaxin Ge, Sanjay Subramanian, Trevor Darrell, Boyi Li

Addressing the challenge of adapting pre-trained vision-language models for generating insightful explanations for visual reasoning tasks with limited annotations, we present ReVisE: a $\textbf{Re}$cursive $\textbf{Vis}$ual $\textbf{E}$xplanation algorithm. Our method iteratively computes visual features (conditioned on the text input), an answer, and an explanation, to improve the explanation quality step by step until the answer converges. We find that this multi-step approach guides the model to correct its own answers and outperforms single-step explanation generation. Furthermore, explanations generated by ReVisE also serve as valuable annotations for few-shot self-training. Our approach outperforms previous methods while utilizing merely 5% of the human-annotated explanations across 10 metrics, demonstrating up to a 4.2 and 1.3 increase in BLEU-1 score on the VCR and VQA-X datasets, underscoring the efficacy and data-efficiency of our method.
PDF EMNLP 2023 Main


In-Context Learning Functions with Varying Number of Minima

Authors:David Oniani, Yanshan Wang

Large Language Models (LLMs) have proven effective at In-Context Learning (ICL), an ability that allows them to create predictors from labeled examples. Few studies have explored the interplay between ICL and specific properties of functions it attempts to approximate. In our study, we use a formal framework to explore ICL and propose a new task of approximating functions with varying number of minima. We implement a method that allows for producing functions with given inputs as minima. We find that increasing the number of minima degrades ICL performance. At the same time, our evaluation shows that ICL outperforms 2-layer Neural Network (2NN) model. Furthermore, ICL learns faster than 2NN in all settings. We validate the findings through a set of few-shot experiments across various hyperparameter configurations.


ComPEFT: Compression for Communicating Parameter Efficient Updates via Sparsification and Quantization

Authors:Prateek Yadav, Leshem Choshen, Colin Raffel, Mohit Bansal

Parameter-efficient fine-tuning (PEFT) techniques make it possible to efficiently adapt a language model to create “expert” models that specialize to new tasks or domains. Recent techniques in model merging and compositional generalization leverage these expert models by dynamically composing modules to improve zero/few-shot generalization. Despite the efficiency of PEFT methods, the size of expert models can make it onerous to retrieve expert models per query over high-latency networks like the Internet or serve multiple experts on a single GPU. To address these issues, we present ComPEFT, a novel method for compressing fine-tuning residuals (task vectors) of PEFT based models. ComPEFT employs sparsification and ternary quantization to reduce the size of the PEFT module without performing any additional retraining while preserving or enhancing model performance. In extensive evaluation across T5, T0, and LLaMA-based models with 200M - 65B parameters, ComPEFT achieves compression ratios of 8x - 50x. In particular, we show that ComPEFT improves with scale - stronger models exhibit higher compressibility and better performance. For example, we show that ComPEFT applied to LLaMA outperforms QLoRA by 4.16% on MMLU with a storage size reduction of up to 26x. In addition, we show that the compressed experts produced by ComPEFT maintain few-shot compositional generalization capabilities, facilitate efficient communication and computation, and exhibit enhanced performance when merged. Lastly, we provide an analysis of different method components, compare it with other PEFT methods, and test ComPEFT’s efficacy for compressing the residual of full-finetuning. Our code is available at https://github.com/prateeky2806/compeft.
PDF 25 Pages, 6 Figures, 16 Tables


Self-guided Few-shot Semantic Segmentation for Remote Sensing Imagery Based on Large Vision Models

Authors:Xiyu Qi, Yifan Wu, Yongqiang Mao, Wenhui Zhang, Yidan Zhang

The Segment Anything Model (SAM) exhibits remarkable versatility and zero-shot learning abilities, owing largely to its extensive training data (SA-1B). Recognizing SAM’s dependency on manual guidance given its category-agnostic nature, we identified unexplored potential within few-shot semantic segmentation tasks for remote sensing imagery. This research introduces a structured framework designed for the automation of few-shot semantic segmentation. It utilizes the SAM model and facilitates a more efficient generation of semantically discernible segmentation outcomes. Central to our methodology is a novel automatic prompt learning approach, leveraging prior guided masks to produce coarse pixel-wise prompts for SAM. Extensive experiments on the DLRSD datasets underline the superiority of our approach, outperforming other available few-shot methodologies.


Depth-Regularized Optimization for 3D Gaussian Splatting in Few-Shot Images

Authors:Jaeyoung Chung, Jeongtaek Oh, Kyoung Mu Lee

In this paper, we present a method to optimize Gaussian splatting with a limited number of images while avoiding overfitting. Representing a 3D scene by combining numerous Gaussian splats has yielded outstanding visual quality. However, it tends to overfit the training views when only a small number of images are available. To address this issue, we introduce a dense depth map as a geometry guide to mitigate overfitting. We obtained the depth map using a pre-trained monocular depth estimation model and aligning the scale and offset using sparse COLMAP feature points. The adjusted depth aids in the color-based optimization of 3D Gaussian splatting, mitigating floating artifacts, and ensuring adherence to geometric constraints. We verify the proposed method on the NeRF-LLFF dataset with varying numbers of few images. Our approach demonstrates robust geometry compared to the original method that relies solely on images.
PDF 10 pages, 5 figures


Speak Like a Native: Prompting Large Language Models in a Native Style

Authors:Zhicheng Yang, Yiwei Wang, Yinya Huang, Jing Xiong, Xiaodan Liang, Jing Tang

Existing work has found that the prompt engineering heavily influences the performance of large language models (LLMs). Chain-of-thought (CoT), as a popular prompt engineering technique, prompted LLMs using in-context examples with reasoning steps. In current studies, the few-shot examples of CoT are generally handcrafted by humans. However, how the text style of in-context examples influence the outputs of LLMs still remains under-explored. This paper presents a novel and effective approach, named \textbf{AlignCoT}, to improve the reasoning capability of LLMs by aligning the in-context examples with the native style of LLMs. ``Native’’ refers to the inherent characteristic style of LLMs which can be probed by original zero-shot scenarios. AlignCoT is orthogonal to other prompt engineering methods, making it easy to combine with state-of-the-art techniques to further improve the LLMs’ performance. We conduct extensive and comprehensive experiments on several benchmarks. The empirical results demonstrate that our AlignCoTsignificantly improves performance over the carefully handcrafted in-context examples. For instance, with GPT-3.5-turbo, we observed a +2.5\% improvement on GSM8K. Furthermore, our AlignCoT consistently improve the performance when combined with other state-of-the-art prompt engineering methods. The source code and dataset will be available at \href{https://github.com/yangzhch6/AlignCoT}{https://github.com/yangzhch6/AlignCoT}.
PDF 8 pages, 3 figures


文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !