2023-11-19 更新
Supported Trust Region Optimization for Offline Reinforcement Learning
Authors:Yixiu Mao, Hongchang Zhang, Chen Chen, Yi Xu, Xiangyang Ji
Offline reinforcement learning suffers from the out-of-distribution issue and extrapolation error. Most policy constraint methods regularize the density of the trained policy towards the behavior policy, which is too restrictive in most cases. We propose Supported Trust Region optimization (STR) which performs trust region policy optimization with the policy constrained within the support of the behavior policy, enjoying the less restrictive support constraint. We show that, when assuming no approximation and sampling error, STR guarantees strict policy improvement until convergence to the optimal support-constrained policy in the dataset. Further with both errors incorporated, STR still guarantees safe policy improvement for each step. Empirical results validate the theory of STR and demonstrate its state-of-the-art performance on MuJoCo locomotion domains and much more challenging AntMaze domains.
PDF Accepted at ICML 2023
点此查看论文截图
Assessing the Robustness of Intelligence-Driven Reinforcement Learning
Authors:Lorenzo Nodari, Federico Cerutti
Robustness to noise is of utmost importance in reinforcement learning systems, particularly in military contexts where high stakes and uncertain environments prevail. Noise and uncertainty are inherent features of military operations, arising from factors such as incomplete information, adversarial actions, or unpredictable battlefield conditions. In RL, noise can critically impact decision-making, mission success, and the safety of personnel. Reward machines offer a powerful tool to express complex reward structures in RL tasks, enabling the design of tailored reinforcement signals that align with mission objectives. This paper considers the problem of the robustness of intelligence-driven reinforcement learning based on reward machines. The preliminary results presented suggest the need for further research in evidential reasoning and learning to harden current state-of-the-art reinforcement learning approaches before being mission-critical-ready.
PDF Accepted for publication at IEEE TechDefense 2023
点此查看论文截图
On the Exploitability of Reinforcement Learning with Human Feedback for Large Language Models
Authors:Jiongxiao Wang, Junlin Wu, Muhao Chen, Yevgeniy Vorobeychik, Chaowei Xiao
Reinforcement Learning with Human Feedback (RLHF) is a methodology designed to align Large Language Models (LLMs) with human preferences, playing an important role in LLMs alignment. Despite its advantages, RLHF relies on human annotators to rank the text, which can introduce potential security vulnerabilities if any adversarial annotator (i.e., attackers) manipulates the ranking score by up-ranking any malicious text to steer the LLM adversarially. To assess the red-teaming of RLHF against human preference data poisoning, we propose RankPoison, a poisoning attack method on candidates’ selection of preference rank flipping to reach certain malicious behaviors (e.g., generating longer sequences, which can increase the computational cost). With poisoned dataset generated by RankPoison, we can perform poisoning attacks on LLMs to generate longer tokens without hurting the original safety alignment performance. Moreover, applying RankPoison, we also successfully implement a backdoor attack where LLMs can generate longer answers under questions with the trigger word. Our findings highlight critical security challenges in RLHF, underscoring the necessity for more robust alignment methods for LLMs.
PDF
点此查看论文截图
Augmenting Unsupervised Reinforcement Learning with Self-Reference
Authors:Andrew Zhao, Erle Zhu, Rui Lu, Matthieu Lin, Yong-Jin Liu, Gao Huang
Humans possess the ability to draw on past experiences explicitly when learning new tasks and applying them accordingly. We believe this capacity for self-referencing is especially advantageous for reinforcement learning agents in the unsupervised pretrain-then-finetune setting. During pretraining, an agent’s past experiences can be explicitly utilized to mitigate the nonstationarity of intrinsic rewards. In the finetuning phase, referencing historical trajectories prevents the unlearning of valuable exploratory behaviors. Motivated by these benefits, we propose the Self-Reference (SR) approach, an add-on module explicitly designed to leverage historical information and enhance agent performance within the pretrain-finetune paradigm. Our approach achieves state-of-the-art results in terms of Interquartile Mean (IQM) performance and Optimality Gap reduction on the Unsupervised Reinforcement Learning Benchmark for model-free methods, recording an 86% IQM and a 16% Optimality Gap. Additionally, it improves current algorithms by up to 17% IQM and reduces the Optimality Gap by 31%. Beyond performance enhancement, the Self-Reference add-on also increases sample efficiency, a crucial attribute for real-world applications.
PDF Preprint
点此查看论文截图
Safety Aware Autonomous Path Planning Using Model Predictive Reinforcement Learning for Inland Waterways
Authors:Astrid Vanneste, Simon Vanneste, Olivier Vasseur, Robin Janssens, Mattias Billast, Ali Anwar, Kevin Mets, Tom De Schepper, Siegfried Mercelis, Peter Hellinckx
In recent years, interest in autonomous shipping in urban waterways has increased significantly due to the trend of keeping cars and trucks out of city centers. Classical approaches such as Frenet frame based planning and potential field navigation often require tuning of many configuration parameters and sometimes even require a different configuration depending on the situation. In this paper, we propose a novel path planning approach based on reinforcement learning called Model Predictive Reinforcement Learning (MPRL). MPRL calculates a series of waypoints for the vessel to follow. The environment is represented as an occupancy grid map, allowing us to deal with any shape of waterway and any number and shape of obstacles. We demonstrate our approach on two scenarios and compare the resulting path with path planning using a Frenet frame and path planning based on a proximal policy optimization (PPO) agent. Our results show that MPRL outperforms both baselines in both test scenarios. The PPO based approach was not able to reach the goal in either scenario while the Frenet frame approach failed in the scenario consisting of a corner with obstacles. MPRL was able to safely (collision free) navigate to the goal in both of the test scenarios.
PDF \c{opyright} 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works