GAN


2023-11-19 更新

Weakly-supervised deepfake localization in diffusion-generated images

Authors:Dragos Tantaru, Elisabeta Oneata, Dan Oneata

The remarkable generative capabilities of denoising diffusion models have raised new concerns regarding the authenticity of the images we see every day on the Internet. However, the vast majority of existing deepfake detection models are tested against previous generative approaches (e.g. GAN) and usually provide only a “fake” or “real” label per image. We believe a more informative output would be to augment the per-image label with a localization map indicating which regions of the input have been manipulated. To this end, we frame this task as a weakly-supervised localization problem and identify three main categories of methods (based on either explanations, local scores or attention), which we compare on an equal footing by using the Xception network as the common backbone architecture. We provide a careful analysis of all the main factors that parameterize the design space: choice of method, type of supervision, dataset and generator used in the creation of manipulated images; our study is enabled by constructing datasets in which only one of the components is varied. Our results show that weakly-supervised localization is attainable, with the best performing detection method (based on local scores) being less sensitive to the looser supervision than to the mismatch in terms of dataset or generator.
PDF Accepted at WACV’24

点此查看论文截图

CycleGANAS: Differentiable Neural Architecture Search for CycleGAN

Authors:Taegun An, Changhee Joo

We develop a Neural Architecture Search (NAS) framework for CycleGAN that carries out unpaired image-to-image translation task. Extending previous NAS techniques for Generative Adversarial Networks (GANs) to CycleGAN is not straightforward due to the task difference and greater search space. We design architectures that consist of a stack of simple ResNet-based cells and develop a search method that effectively explore the large search space. We show that our framework, called CycleGANAS, not only effectively discovers high-performance architectures that either match or surpass the performance of the original CycleGAN, but also successfully address the data imbalance by individual architecture search for each translation direction. To our best knowledge, it is the first NAS result for CycleGAN and shed light on NAS for more complex structures.
PDF

点此查看论文截图

Controlling the Output of a Generative Model by Latent Feature Vector Shifting

Authors:Róbert Belanec, Peter Lacko, Kristína Malinovská

State-of-the-art generative models (e.g. StyleGAN3 \cite{karras2021alias}) often generate photorealistic images based on vectors sampled from their latent space. However, the ability to control the output is limited. Here we present our novel method for latent vector shifting for controlled output image modification utilizing semantic features of the generated images. In our approach we use a pre-trained model of StyleGAN3 that generates images of realistic human faces in relatively high resolution. We complement the generative model with a convolutional neural network classifier, namely ResNet34, trained to classify the generated images with binary facial features from the CelebA dataset. Our latent feature shifter is a neural network model with a task to shift the latent vectors of a generative model into a specified feature direction. We have trained latent feature shifter for multiple facial features, and outperformed our baseline method in the number of generated images with the desired feature. To train our latent feature shifter neural network, we have designed a dataset of pairs of latent vectors with and without a certain feature. Based on the evaluation, we conclude that our latent feature shifter approach was successful in the controlled generation of the StyleGAN3 generator.
PDF 7 pages, presented on DISA2023 conference in Ko\v{s}ice

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录